You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
370 lines
11 KiB
370 lines
11 KiB
3 months ago
|
# License: Apache 2.0. See LICENSE file in root directory.
|
||
|
# Copyright(c) 2015-2017 Intel Corporation. All Rights Reserved.
|
||
|
|
||
|
"""
|
||
|
OpenCV and Numpy Point cloud Software Renderer
|
||
|
|
||
|
This sample is mostly for demonstration and educational purposes.
|
||
|
It really doesn't offer the quality or performance that can be
|
||
|
achieved with hardware acceleration.
|
||
|
|
||
|
Usage:
|
||
|
------
|
||
|
Mouse:
|
||
|
Drag with left button to rotate around pivot (thick small axes),
|
||
|
with right button to translate and the wheel to zoom.
|
||
|
|
||
|
Keyboard:
|
||
|
[p] Pause
|
||
|
[r] Reset View
|
||
|
[d] Cycle through decimation values
|
||
|
[z] Toggle point scaling
|
||
|
[c] Toggle color source
|
||
|
[s] Save PNG (./out.png)
|
||
|
[e] Export points to ply (./out.ply)
|
||
|
[q\ESC] Quit
|
||
|
"""
|
||
|
|
||
|
import math
|
||
|
import time
|
||
|
import cv2
|
||
|
import numpy as np
|
||
|
import pyrealsense2 as rs
|
||
|
|
||
|
class AppState:
|
||
|
|
||
|
def __init__(self, *args, **kwargs):
|
||
|
self.WIN_NAME = 'RealSense'
|
||
|
self.pitch, self.yaw = math.radians(-10), math.radians(-15)
|
||
|
self.translation = np.array([0, 0, -1], dtype=np.float32)
|
||
|
self.distance = 2
|
||
|
self.prev_mouse = 0, 0
|
||
|
self.mouse_btns = [False, False, False]
|
||
|
self.paused = False
|
||
|
self.decimate = 1
|
||
|
self.scale = True
|
||
|
self.color = True
|
||
|
|
||
|
def reset(self):
|
||
|
self.pitch, self.yaw, self.distance = 0, 0, 2
|
||
|
self.translation[:] = 0, 0, -1
|
||
|
|
||
|
@property
|
||
|
def rotation(self):
|
||
|
Rx, _ = cv2.Rodrigues((self.pitch, 0, 0))
|
||
|
Ry, _ = cv2.Rodrigues((0, self.yaw, 0))
|
||
|
return np.dot(Ry, Rx).astype(np.float32)
|
||
|
|
||
|
@property
|
||
|
def pivot(self):
|
||
|
return self.translation + np.array((0, 0, self.distance), dtype=np.float32)
|
||
|
|
||
|
|
||
|
state = AppState()
|
||
|
|
||
|
# Configure depth and color streams
|
||
|
pipeline = rs.pipeline()
|
||
|
config = rs.config()
|
||
|
|
||
|
pipeline_wrapper = rs.pipeline_wrapper(pipeline)
|
||
|
pipeline_profile = config.resolve(pipeline_wrapper)
|
||
|
device = pipeline_profile.get_device()
|
||
|
|
||
|
found_rgb = False
|
||
|
for s in device.sensors:
|
||
|
if s.get_info(rs.camera_info.name) == 'RGB Camera':
|
||
|
found_rgb = True
|
||
|
break
|
||
|
if not found_rgb:
|
||
|
print("The demo requires Depth camera with Color sensor")
|
||
|
exit(0)
|
||
|
|
||
|
config.enable_stream(rs.stream.depth, rs.format.z16, 30)
|
||
|
config.enable_stream(rs.stream.color, rs.format.bgr8, 30)
|
||
|
|
||
|
# Start streaming
|
||
|
pipeline.start(config)
|
||
|
|
||
|
# Get stream profile and camera intrinsics
|
||
|
profile = pipeline.get_active_profile()
|
||
|
depth_profile = rs.video_stream_profile(profile.get_stream(rs.stream.depth))
|
||
|
depth_intrinsics = depth_profile.get_intrinsics()
|
||
|
w, h = depth_intrinsics.width, depth_intrinsics.height
|
||
|
|
||
|
# Processing blocks
|
||
|
pc = rs.pointcloud()
|
||
|
decimate = rs.decimation_filter()
|
||
|
decimate.set_option(rs.option.filter_magnitude, 2 ** state.decimate)
|
||
|
colorizer = rs.colorizer()
|
||
|
|
||
|
|
||
|
def mouse_cb(event, x, y, flags, param):
|
||
|
|
||
|
if event == cv2.EVENT_LBUTTONDOWN:
|
||
|
state.mouse_btns[0] = True
|
||
|
|
||
|
if event == cv2.EVENT_LBUTTONUP:
|
||
|
state.mouse_btns[0] = False
|
||
|
|
||
|
if event == cv2.EVENT_RBUTTONDOWN:
|
||
|
state.mouse_btns[1] = True
|
||
|
|
||
|
if event == cv2.EVENT_RBUTTONUP:
|
||
|
state.mouse_btns[1] = False
|
||
|
|
||
|
if event == cv2.EVENT_MBUTTONDOWN:
|
||
|
state.mouse_btns[2] = True
|
||
|
|
||
|
if event == cv2.EVENT_MBUTTONUP:
|
||
|
state.mouse_btns[2] = False
|
||
|
|
||
|
if event == cv2.EVENT_MOUSEMOVE:
|
||
|
|
||
|
h, w = out.shape[:2]
|
||
|
dx, dy = x - state.prev_mouse[0], y - state.prev_mouse[1]
|
||
|
|
||
|
if state.mouse_btns[0]:
|
||
|
state.yaw += float(dx) / w * 2
|
||
|
state.pitch -= float(dy) / h * 2
|
||
|
|
||
|
elif state.mouse_btns[1]:
|
||
|
dp = np.array((dx / w, dy / h, 0), dtype=np.float32)
|
||
|
state.translation -= np.dot(state.rotation, dp)
|
||
|
|
||
|
elif state.mouse_btns[2]:
|
||
|
dz = math.sqrt(dx**2 + dy**2) * math.copysign(0.01, -dy)
|
||
|
state.translation[2] += dz
|
||
|
state.distance -= dz
|
||
|
|
||
|
if event == cv2.EVENT_MOUSEWHEEL:
|
||
|
dz = math.copysign(0.1, flags)
|
||
|
state.translation[2] += dz
|
||
|
state.distance -= dz
|
||
|
|
||
|
state.prev_mouse = (x, y)
|
||
|
|
||
|
|
||
|
cv2.namedWindow(state.WIN_NAME, cv2.WINDOW_AUTOSIZE)
|
||
|
cv2.resizeWindow(state.WIN_NAME, w, h)
|
||
|
cv2.setMouseCallback(state.WIN_NAME, mouse_cb)
|
||
|
|
||
|
|
||
|
def project(v):
|
||
|
"""project 3d vector array to 2d"""
|
||
|
h, w = out.shape[:2]
|
||
|
view_aspect = float(h)/w
|
||
|
|
||
|
# ignore divide by zero for invalid depth
|
||
|
with np.errstate(divide='ignore', invalid='ignore'):
|
||
|
proj = v[:, :-1] / v[:, -1, np.newaxis] * \
|
||
|
(w*view_aspect, h) + (w/2.0, h/2.0)
|
||
|
|
||
|
# near clipping
|
||
|
znear = 0.03
|
||
|
proj[v[:, 2] < znear] = np.nan
|
||
|
return proj
|
||
|
|
||
|
|
||
|
def view(v):
|
||
|
"""apply view transformation on vector array"""
|
||
|
return np.dot(v - state.pivot, state.rotation) + state.pivot - state.translation
|
||
|
|
||
|
|
||
|
def line3d(out, pt1, pt2, color=(0x80, 0x80, 0x80), thickness=1):
|
||
|
"""draw a 3d line from pt1 to pt2"""
|
||
|
p0 = project(pt1.reshape(-1, 3))[0]
|
||
|
p1 = project(pt2.reshape(-1, 3))[0]
|
||
|
if np.isnan(p0).any() or np.isnan(p1).any():
|
||
|
return
|
||
|
p0 = tuple(p0.astype(int))
|
||
|
p1 = tuple(p1.astype(int))
|
||
|
rect = (0, 0, out.shape[1], out.shape[0])
|
||
|
inside, p0, p1 = cv2.clipLine(rect, p0, p1)
|
||
|
if inside:
|
||
|
cv2.line(out, p0, p1, color, thickness, cv2.LINE_AA)
|
||
|
|
||
|
|
||
|
def grid(out, pos, rotation=np.eye(3), size=1, n=10, color=(0x80, 0x80, 0x80)):
|
||
|
"""draw a grid on xz plane"""
|
||
|
pos = np.array(pos)
|
||
|
s = size / float(n)
|
||
|
s2 = 0.5 * size
|
||
|
for i in range(0, n+1):
|
||
|
x = -s2 + i*s
|
||
|
line3d(out, view(pos + np.dot((x, 0, -s2), rotation)),
|
||
|
view(pos + np.dot((x, 0, s2), rotation)), color)
|
||
|
for i in range(0, n+1):
|
||
|
z = -s2 + i*s
|
||
|
line3d(out, view(pos + np.dot((-s2, 0, z), rotation)),
|
||
|
view(pos + np.dot((s2, 0, z), rotation)), color)
|
||
|
|
||
|
|
||
|
def axes(out, pos, rotation=np.eye(3), size=0.075, thickness=2):
|
||
|
"""draw 3d axes"""
|
||
|
line3d(out, pos, pos +
|
||
|
np.dot((0, 0, size), rotation), (0xff, 0, 0), thickness)
|
||
|
line3d(out, pos, pos +
|
||
|
np.dot((0, size, 0), rotation), (0, 0xff, 0), thickness)
|
||
|
line3d(out, pos, pos +
|
||
|
np.dot((size, 0, 0), rotation), (0, 0, 0xff), thickness)
|
||
|
|
||
|
|
||
|
def frustum(out, intrinsics, color=(0x40, 0x40, 0x40)):
|
||
|
"""draw camera's frustum"""
|
||
|
orig = view([0, 0, 0])
|
||
|
w, h = intrinsics.width, intrinsics.height
|
||
|
|
||
|
for d in range(1, 6, 2):
|
||
|
def get_point(x, y):
|
||
|
p = rs.rs2_deproject_pixel_to_point(intrinsics, [x, y], d)
|
||
|
line3d(out, orig, view(p), color)
|
||
|
return p
|
||
|
|
||
|
top_left = get_point(0, 0)
|
||
|
top_right = get_point(w, 0)
|
||
|
bottom_right = get_point(w, h)
|
||
|
bottom_left = get_point(0, h)
|
||
|
|
||
|
line3d(out, view(top_left), view(top_right), color)
|
||
|
line3d(out, view(top_right), view(bottom_right), color)
|
||
|
line3d(out, view(bottom_right), view(bottom_left), color)
|
||
|
line3d(out, view(bottom_left), view(top_left), color)
|
||
|
|
||
|
|
||
|
def pointcloud(out, verts, texcoords, color, painter=True):
|
||
|
"""draw point cloud with optional painter's algorithm"""
|
||
|
if painter:
|
||
|
# Painter's algo, sort points from back to front
|
||
|
|
||
|
# get reverse sorted indices by z (in view-space)
|
||
|
# https://gist.github.com/stevenvo/e3dad127598842459b68
|
||
|
v = view(verts)
|
||
|
s = v[:, 2].argsort()[::-1]
|
||
|
proj = project(v[s])
|
||
|
else:
|
||
|
proj = project(view(verts))
|
||
|
|
||
|
if state.scale:
|
||
|
proj *= 0.5**state.decimate
|
||
|
|
||
|
h, w = out.shape[:2]
|
||
|
|
||
|
# proj now contains 2d image coordinates
|
||
|
j, i = proj.astype(np.uint32).T
|
||
|
|
||
|
# create a mask to ignore out-of-bound indices
|
||
|
im = (i >= 0) & (i < h)
|
||
|
jm = (j >= 0) & (j < w)
|
||
|
m = im & jm
|
||
|
|
||
|
cw, ch = color.shape[:2][::-1]
|
||
|
if painter:
|
||
|
# sort texcoord with same indices as above
|
||
|
# texcoords are [0..1] and relative to top-left pixel corner,
|
||
|
# multiply by size and add 0.5 to center
|
||
|
v, u = (texcoords[s] * (cw, ch) + 0.5).astype(np.uint32).T
|
||
|
else:
|
||
|
v, u = (texcoords * (cw, ch) + 0.5).astype(np.uint32).T
|
||
|
# clip texcoords to image
|
||
|
np.clip(u, 0, ch-1, out=u)
|
||
|
np.clip(v, 0, cw-1, out=v)
|
||
|
|
||
|
# perform uv-mapping
|
||
|
out[i[m], j[m]] = color[u[m], v[m]]
|
||
|
|
||
|
|
||
|
out = np.empty((h, w, 3), dtype=np.uint8)
|
||
|
|
||
|
while True:
|
||
|
# Grab camera data
|
||
|
if not state.paused:
|
||
|
# Wait for a coherent pair of frames: depth and color
|
||
|
frames = pipeline.wait_for_frames()
|
||
|
|
||
|
depth_frame = frames.get_depth_frame()
|
||
|
color_frame = frames.get_color_frame()
|
||
|
|
||
|
depth_frame = decimate.process(depth_frame)
|
||
|
|
||
|
# Grab new intrinsics (may be changed by decimation)
|
||
|
depth_intrinsics = rs.video_stream_profile(
|
||
|
depth_frame.profile).get_intrinsics()
|
||
|
w, h = depth_intrinsics.width, depth_intrinsics.height
|
||
|
|
||
|
depth_image = np.asanyarray(depth_frame.get_data())
|
||
|
color_image = np.asanyarray(color_frame.get_data())
|
||
|
|
||
|
depth_colormap = np.asanyarray(
|
||
|
colorizer.colorize(depth_frame).get_data())
|
||
|
|
||
|
if state.color:
|
||
|
mapped_frame, color_source = color_frame, color_image
|
||
|
else:
|
||
|
mapped_frame, color_source = depth_frame, depth_colormap
|
||
|
|
||
|
points = pc.calculate(depth_frame)
|
||
|
pc.map_to(mapped_frame)
|
||
|
|
||
|
# Pointcloud data to arrays
|
||
|
v, t = points.get_vertices(), points.get_texture_coordinates()
|
||
|
verts = np.asanyarray(v).view(np.float32).reshape(-1, 3) # xyz
|
||
|
texcoords = np.asanyarray(t).view(np.float32).reshape(-1, 2) # uv
|
||
|
|
||
|
# Render
|
||
|
now = time.time()
|
||
|
|
||
|
out.fill(0)
|
||
|
|
||
|
grid(out, (0, 0.5, 1), size=1, n=10)
|
||
|
frustum(out, depth_intrinsics)
|
||
|
axes(out, view([0, 0, 0]), state.rotation, size=0.1, thickness=1)
|
||
|
|
||
|
if not state.scale or out.shape[:2] == (h, w):
|
||
|
pointcloud(out, verts, texcoords, color_source)
|
||
|
else:
|
||
|
tmp = np.zeros((h, w, 3), dtype=np.uint8)
|
||
|
pointcloud(tmp, verts, texcoords, color_source)
|
||
|
tmp = cv2.resize(
|
||
|
tmp, out.shape[:2][::-1], interpolation=cv2.INTER_NEAREST)
|
||
|
np.putmask(out, tmp > 0, tmp)
|
||
|
|
||
|
if any(state.mouse_btns):
|
||
|
axes(out, view(state.pivot), state.rotation, thickness=4)
|
||
|
|
||
|
dt = time.time() - now
|
||
|
|
||
|
cv2.setWindowTitle(
|
||
|
state.WIN_NAME, "RealSense (%dx%d) %dFPS (%.2fms) %s" %
|
||
|
(w, h, 1.0/dt, dt*1000, "PAUSED" if state.paused else ""))
|
||
|
|
||
|
cv2.imshow(state.WIN_NAME, out)
|
||
|
key = cv2.waitKey(1)
|
||
|
|
||
|
if key == ord("r"):
|
||
|
state.reset()
|
||
|
|
||
|
if key == ord("p"):
|
||
|
state.paused ^= True
|
||
|
|
||
|
if key == ord("d"):
|
||
|
state.decimate = (state.decimate + 1) % 3
|
||
|
decimate.set_option(rs.option.filter_magnitude, 2 ** state.decimate)
|
||
|
|
||
|
if key == ord("z"):
|
||
|
state.scale ^= True
|
||
|
|
||
|
if key == ord("c"):
|
||
|
state.color ^= True
|
||
|
|
||
|
if key == ord("s"):
|
||
|
cv2.imwrite('./out.png', out)
|
||
|
|
||
|
if key == ord("e"):
|
||
|
points.export_to_ply('./out.ply', mapped_frame)
|
||
|
|
||
|
if key in (27, ord("q")) or cv2.getWindowProperty(state.WIN_NAME, cv2.WND_PROP_AUTOSIZE) < 0:
|
||
|
break
|
||
|
|
||
|
# Stop streaming
|
||
|
pipeline.stop()
|