import numpy as np import cv2 from datetime import datetime class TargetFollower: def __init__(self, detections, annotated_image, camera_position=np.array([0, 0, 0])): self.detections = detections self.camera_position = camera_position self.target = None # Сохраняем аннотированное изображение output_path = './annotated_image.jpg' cv2.imwrite(output_path, annotated_image) print(f"Annotated image saved to {output_path}") print("Detections info:") for info in detections: print(info) def get_target(self): return self.target def select_target(self, class_name, nearest=False): """ Выбирает объект по указанному имени класса. Если nearest=True, выбирается ближайший объект по значению mean_depth. :param class_name: Имя класса, который нужно выбрать. :param nearest: Если True, выбирает ближайший объект с данным классом. :return: Найденный объект или None, если объект не найден. """ if nearest: closest_detection = None min_depth = float('inf') for detection in self.detections: if detection['class_name'] == class_name: if detection['mean_depth'] < min_depth: min_depth = detection['mean_depth'] closest_detection = detection self.target = closest_detection if self.target is not None: print(f"Closest target selected: {self.target}") else: print(f"Target with class name '{class_name}' not found.") return self.target else: for detection in self.detections: if detection['class_name'] == class_name: self.target = detection print(f"Target selected: {self.target}") return self.target print(f"Target with class name '{class_name}' not found.") return None def calculate_follow_vector(self): if self.target is None: print("Target not selected.") return None bbox = self.target['bbox'] target_center_x = (bbox[0] + bbox[2]) / 2 target_center_y = (bbox[1] + bbox[3]) / 2 target_depth = self.target['mean_depth'] target_position = np.array([target_center_x, target_center_y, target_depth]) follow_vector = target_position - self.camera_position return follow_vector def get_target_position(self): if self.target is None: print("Target not selected.") return None bbox = self.target['bbox'] target_center_x = (bbox[0] + bbox[2]) / 2 target_center_y = (bbox[1] + bbox[3]) / 2 target_depth = self.target['mean_depth'] target_position = np.array([target_center_x, target_center_y, target_depth]) return target_position