// License: Apache 2.0. See LICENSE file in root directory. // Copyright(c) 2015 Intel Corporation. All Rights Reserved. ///////////////////////////////////////////////////////////////////////////////////////////////////////////// // The specific tests are configured to run only when the library is staticly-linked to test implementation // of librealsense core classes ///////////////////////////////////////////////////////////////////////////////////////////////////////////// #include #include #include #include #include #include "unit-tests-common.h" #include "../include/librealsense2/rs_advanced_mode.hpp" #include "../include/librealsense2/hpp/rs_frame.hpp" #include "../include/librealsense2/hpp/rs_processing.hpp" #include #include <../src/proc/synthetic-stream.h> #include <../src/proc/disparity-transform.h> #include <../src/proc/spatial-filter.h> #include <../src/proc/temporal-filter.h> using namespace rs2; using namespace librealsense; // An internal namespace not acessible via the public API # define SECTION_FROM_TEST_NAME space_to_underscore(Catch::getCurrentContext().getResultCapture()->getCurrentTestName()).c_str() long long current_time() { return (std::chrono::duration_cast(std::chrono::system_clock::now().time_since_epoch()).count() % 10000); } //// disable in one place options that are sensitive to frame content //// this is done to make sure unit-tests are deterministic void disable_sensitive_options_for(sensor& sen) { if (sen.supports(RS2_OPTION_ERROR_POLLING_ENABLED)) REQUIRE_NOTHROW(sen.set_option(RS2_OPTION_ERROR_POLLING_ENABLED, 0)); if (sen.supports(RS2_OPTION_ENABLE_AUTO_EXPOSURE)) REQUIRE_NOTHROW(sen.set_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE, 0)); if (sen.supports(RS2_OPTION_EXPOSURE)) { rs2::option_range range; REQUIRE_NOTHROW(range = sen.get_option_range(RS2_OPTION_EXPOSURE)); // TODO: fails sometimes with "Element Not Found!" REQUIRE_NOTHROW(sen.set_option(RS2_OPTION_EXPOSURE, range.def)); } } void disable_sensitive_options_for(rs2::device& dev) { for (auto&& s : dev.query_sensors()) disable_sensitive_options_for(s); } bool wait_for_reset(std::function func, std::shared_ptr dev) { if (func()) return true; WARN("Reset workaround"); try { dev->hardware_reset(); } catch (...) { } return func(); } bool is_usb3(const rs2::device& dev) { bool usb3_device = true; try { std::string usb_type(dev.get_info(RS2_CAMERA_INFO_USB_TYPE_DESCRIPTOR)); // Device types "3.x" and also "" (for legacy playback records) will be recognized as USB3 usb3_device = (std::string::npos == usb_type.find("2.")); } catch (...) // In case the feature not provided assume USB3 device { } return usb3_device; } // Provides for Device PID , USB3/2 (true/false) typedef std::pair dev_type; dev_type get_PID(rs2::device& dev) { dev_type designator{ "",true }; std::string usb_type{}; bool usb_descriptor = false; REQUIRE_NOTHROW(designator.first = dev.get_info(RS2_CAMERA_INFO_PRODUCT_ID)); REQUIRE_NOTHROW(usb_descriptor = dev.supports(RS2_CAMERA_INFO_USB_TYPE_DESCRIPTOR)); if (usb_descriptor) { REQUIRE_NOTHROW(usb_type = dev.get_info(RS2_CAMERA_INFO_USB_TYPE_DESCRIPTOR)); designator.second = (std::string::npos == usb_type.find("2.")); } return designator; } struct stream_request { rs2_stream stream; rs2_format format; int width; int height; int fps; int index; bool operator==(const video_stream_profile& other) const { return stream == other.stream_type() && format == other.format() && width == other.width() && height == other.height() && index == other.stream_index(); } }; struct test_profile { rs2_stream stream; rs2_format format; int width; int height; int index; bool operator==(const test_profile& other) const { return stream == other.stream && (format == 0 || other.format == 0 || format == other.format) && (width == 0 || other.width == 0 || width == other.width) && (height == 0 || other.height == 0 || height == other.height) && (index == 0 || other.index == 0 || index == other.index); } bool operator!=(const test_profile& other) const { return !(*this == other); } bool operator<(const test_profile& other) const { return stream < other.stream; } }; struct device_profiles { std::vector streams; int fps; bool sync; }; std::vector configure_all_supported_streams(rs2::sensor& sensor, int width = 640, int height = 480, int fps = 60) { std::vector all_profiles = { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, width, height, 0 }, { RS2_STREAM_COLOR, RS2_FORMAT_RGB8, width, height, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, width, height, 1 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, width, height, 2 }, { RS2_STREAM_FISHEYE, RS2_FORMAT_RAW8, width, height, 0 }, // {RS2_STREAM_GYRO, 0, 0, 0, RS2_FORMAT_MOTION_XYZ32F, 0}, // {RS2_STREAM_ACCEL, 0, 0, 0, RS2_FORMAT_MOTION_XYZ32F, 0} }; std::vector profiles; std::vector modes; auto all_modes = sensor.get_stream_profiles(); for (auto profile : all_profiles) { if (std::find_if(all_modes.begin(), all_modes.end(), [&](rs2::stream_profile p) { auto video = p.as(); if (!video) return false; if (p.fps() == fps && p.stream_index() == profile.index && p.stream_type() == profile.stream && p.format() == profile.format && video.width() == profile.width && video.height() == profile.height) { modes.push_back(p); return true; } return false; }) != all_modes.end()) { profiles.push_back(profile); } } if (modes.size() > 0) REQUIRE_NOTHROW(sensor.open(modes)); return profiles; } std::pair, std::vector> configure_all_supported_streams(rs2::device& dev, int width = 640, int height = 480, int fps = 30) { std::vector profiles; std::vector sensors; auto sens = dev.query_sensors(); for (auto s : sens) { auto res = configure_all_supported_streams(s, width, height, fps); profiles.insert(profiles.end(), res.begin(), res.end()); if (res.size() > 0) { sensors.push_back(s); } } return{ sensors, profiles }; } TEST_CASE("Sync sanity", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); auto dev = list[0]; disable_sensitive_options_for(dev); int fps = is_usb3(dev) ? 30 : 15; // In USB2 Mode the devices will switch to lower FPS rates rs2::syncer sync; auto profiles = configure_all_supported_streams(dev,640,480, fps); for (auto s : dev.query_sensors()) { s.start(sync); } std::vector> all_timestamps; auto actual_fps = fps; bool hw_timestamp_domain = false; bool system_timestamp_domain = false; for (auto i = 0; i < 200; i++) { auto frames = sync.wait_for_frames(5000); REQUIRE(frames.size() > 0); std::vector timestamps; for (auto&& f : frames) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } if (f.get_frame_timestamp_domain() == RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK) { hw_timestamp_domain = true; } if (f.get_frame_timestamp_domain() == RS2_TIMESTAMP_DOMAIN_SYSTEM_TIME) { system_timestamp_domain = true; } timestamps.push_back(f.get_timestamp()); } all_timestamps.push_back(timestamps); } for (auto i = 0; i < 30; i++) { auto frames = sync.wait_for_frames(500); } CAPTURE(hw_timestamp_domain); CAPTURE(system_timestamp_domain); REQUIRE(hw_timestamp_domain != system_timestamp_domain); size_t num_of_partial_sync_sets = 0; for (auto set_timestamps : all_timestamps) { if (set_timestamps.size() < profiles.second.size()) num_of_partial_sync_sets++; if (set_timestamps.size() <= 1) continue; std::sort(set_timestamps.begin(), set_timestamps.end()); REQUIRE(set_timestamps[set_timestamps.size() - 1] - set_timestamps[0] <= (float)1000/(float)actual_fps); } CAPTURE(num_of_partial_sync_sets); CAPTURE(all_timestamps.size()); REQUIRE((float(num_of_partial_sync_sets) / all_timestamps.size()) < 0.9f); for (auto s : dev.query_sensors()) { s.stop(); } } } TEST_CASE("Sync different fps", "[live][!mayfail]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); auto dev = list[0]; list = ctx.query_devices(); REQUIRE(list.size()); dev = list[0]; syncer syncer; disable_sensitive_options_for(dev); auto sensors = dev.query_sensors(); for (auto s : sensors) { if (s.supports(RS2_OPTION_EXPOSURE)) { auto range = s.get_option_range(RS2_OPTION_EXPOSURE); REQUIRE_NOTHROW(s.set_option(RS2_OPTION_EXPOSURE, range.min)); } } std::map profiles_sensors; std::map sensors_profiles; int fps_step = is_usb3(dev) ? 30 : 15; // USB2 Mode std::vector fps(sensors.size(), 0); // The heuristic for FPS selection need to be better explained and probably refactored for (auto i = 0; i < fps.size(); i++) { fps[i] = (fps.size() - i - 1) * fps_step % 90 + fps_step; } std::vector> streams_groups(fps.size()); for (auto i = 0; i < sensors.size(); i++) { auto profs = configure_all_supported_streams(sensors[i], 640, 480, fps[i]); for (auto p : profs) { profiles_sensors[p.stream] = &sensors[i]; sensors_profiles[&sensors[i]] = p.stream; } if (profs.size() > 0) sensors[i].start(syncer); } for (auto i = 0; i < sensors.size(); i++) { for (auto j = 0; j < sensors.size(); j++) { if ((float)fps[j] / (float)fps[i] >= 1) { streams_groups[i].push_back(&sensors[j]); } } } std::vector> frames_arrived; for (auto i = 0; i < 200; i++) { auto frames = syncer.wait_for_frames(5000); REQUIRE(frames.size() > 0); std::vector streams_arrived; for (auto&& f : frames) { auto s = f.get_profile().stream_type(); streams_arrived.push_back(s); } frames_arrived.push_back(streams_arrived); } std::vector streams_groups_arrrived(streams_groups.size(), 0); for (auto streams : frames_arrived) { std::set sensors; for (auto s : streams) { sensors.insert(profiles_sensors[s]); } std::vector sensors_vec(sensors.size()); std::copy(sensors.begin(), sensors.end(), sensors_vec.begin()); auto it = std::find(streams_groups.begin(), streams_groups.end(), sensors_vec); if (it != streams_groups.end()) { auto ind = std::distance(streams_groups.begin(), it); streams_groups_arrrived[ind]++; } } for (auto i = 0; i < streams_groups_arrrived.size(); i++) { for (auto j = 0; j < streams_groups_arrrived.size(); j++) { REQUIRE(streams_groups_arrrived[j]); auto num1 = streams_groups_arrrived[i]; auto num2 = streams_groups_arrrived[j]; CAPTURE(sensors_profiles[&sensors[i]]); CAPTURE(num1); CAPTURE(sensors_profiles[&sensors[j]]); CAPTURE(num2); REQUIRE((float)num1 / (float)num2 <= 5 * (float)fps[i] / (float)fps[j]); } } } } bool get_mode(rs2::device& dev, rs2::stream_profile* profile, int mode_index = 0) { auto sensors = dev.query_sensors(); REQUIRE(sensors.size() > 0); for (auto i = 0; i < sensors.size(); i++) { auto modes = sensors[i].get_stream_profiles(); REQUIRE(modes.size() > 0); if (mode_index >= modes.size()) continue; *profile = modes[mode_index]; return true; } return false; } TEST_CASE("Sync start stop", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size() > 0); auto dev = list[0]; disable_sensitive_options_for(dev); syncer sync; rs2::stream_profile mode; auto mode_index = 0; bool usb3_device = is_usb3(dev); int fps = usb3_device ? 30 : 15; // In USB2 Mode the devices will switch to lower FPS rates int req_fps = usb3_device ? 60 : 30; // USB2 Mode has only a single resolution for 60 fps which is not sufficient to run the test do { REQUIRE(get_mode(dev, &mode, mode_index)); mode_index++; } while (mode.fps() != req_fps); auto video = mode.as(); auto res = configure_all_supported_streams(dev, video.width(), video.height(), mode.fps()); for (auto s : res.first) { REQUIRE_NOTHROW(s.start(sync)); } rs2::frameset frames; for (auto i = 0; i < 30; i++) { frames = sync.wait_for_frames(10000); REQUIRE(frames.size() > 0); } frameset old_frames; while (sync.poll_for_frames(&old_frames)); rs2::stream_profile other_mode; mode_index = 0; REQUIRE(get_mode(dev, &other_mode, mode_index)); auto other_video = other_mode.as(); while ((other_video.height() == video.height() && other_video.width() == video.width()) || other_video.fps() != req_fps) { CAPTURE(mode_index); CAPTURE(video.format()); CAPTURE(video.width()); CAPTURE(video.height()); CAPTURE(video.fps()); CAPTURE(other_video.format()); CAPTURE(other_video.width()); CAPTURE(other_video.height()); CAPTURE(other_video.fps()); REQUIRE(get_mode(dev, &other_mode, mode_index)); mode_index++; other_video = other_mode.as(); REQUIRE(other_video); } for (auto s : res.first) { REQUIRE_NOTHROW(s.stop()); REQUIRE_NOTHROW(s.close()); } res = configure_all_supported_streams(dev, other_video.width(), other_video.height(), other_mode.fps()); for (auto s : res.first) { REQUIRE_NOTHROW(s.start(sync)); } for (auto i = 0; i < 10; i++) frames = sync.wait_for_frames(10000); REQUIRE(frames.size() > 0); auto f = frames[0]; auto image = f.as(); REQUIRE(image); REQUIRE(image.get_width() == other_video.width()); REQUIRE(image.get_height() == other_video.height()); } } TEST_CASE("Device metadata enumerates correctly", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { // Require at least one device to be plugged in std::vector list; REQUIRE_NOTHROW(list = ctx.query_devices()); REQUIRE(list.size() > 0); // For each device for (auto&& dev : list) { SECTION("supported device metadata strings are nonempty, unsupported ones throw") { for (auto j = 0; j < RS2_CAMERA_INFO_COUNT; ++j) { auto is_supported = false; REQUIRE_NOTHROW(is_supported = dev.supports(rs2_camera_info(j))); if (is_supported) REQUIRE(dev.get_info(rs2_camera_info(j)) != nullptr); else REQUIRE_THROWS(dev.get_info(rs2_camera_info(j))); } } } } } //////////////////////////////////////////// ////// Test basic streaming functionality // //////////////////////////////////////////// TEST_CASE("Start-Stop stream sequence", "[live]") { // Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); pipeline pipe(ctx); device dev; // Configure all supported streams to run at 30 frames per second for (auto i = 0; i < 5; i++) { rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); // Test sequence REQUIRE_NOTHROW(pipe.start(cfg)); REQUIRE_NOTHROW(pipe.stop()); } } } ///////////////////////////////////////// //////// Calibration information tests // ///////////////////////////////////////// TEST_CASE("No extrinsic transformation between a stream and itself", "[live]") { // Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); const size_t device_count = list.size(); REQUIRE(device_count > 0); // For each device for (auto&& dev : list) { std::vector profs; REQUIRE_NOTHROW(profs = dev.get_stream_profiles()); REQUIRE(profs.size()>0); rs2_extrinsics extrin; try { auto prof = profs[0]; extrin = prof.get_extrinsics_to(prof); } catch (error &e) { // if device isn't calibrated, get_extrinsics must error out (according to old comment. Might not be true under new API) WARN(e.what()); continue; } require_identity_matrix(extrin.rotation); require_zero_vector(extrin.translation); } } } TEST_CASE("Extrinsic transformation between two streams is a rigid transform", "[live]") { // Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); const size_t device_count = list.size(); REQUIRE(device_count > 0); // For each device for (int i = 0; i < device_count; ++i) { auto dev = list[i]; auto adj_devices = ctx.get_sensor_parent(dev).query_sensors(); //REQUIRE(dev != nullptr); // For every pair of streams for (auto j = 0; j < adj_devices.size(); ++j) { for (int k = j + 1; k < adj_devices.size(); ++k) { std::vector profs_a, profs_b; REQUIRE_NOTHROW(profs_a = adj_devices[j].get_stream_profiles()); REQUIRE(profs_a.size()>0); REQUIRE_NOTHROW(profs_b = adj_devices[k].get_stream_profiles()); REQUIRE(profs_b.size()>0); // Extrinsics from A to B should have an orthonormal 3x3 rotation matrix and a translation vector of magnitude less than 10cm rs2_extrinsics a_to_b; try { a_to_b = profs_a[0].get_extrinsics_to(profs_b[0]); } catch (error &e) { WARN(e.what()); continue; } require_rotation_matrix(a_to_b.rotation); REQUIRE(vector_length(a_to_b.translation) < 0.1f); // Extrinsics from B to A should be the inverse of extrinsics from A to B rs2_extrinsics b_to_a; REQUIRE_NOTHROW(b_to_a = profs_b[0].get_extrinsics_to(profs_a[0])); require_transposed(a_to_b.rotation, b_to_a.rotation); REQUIRE(b_to_a.rotation[0] * a_to_b.translation[0] + b_to_a.rotation[3] * a_to_b.translation[1] + b_to_a.rotation[6] * a_to_b.translation[2] == approx(-b_to_a.translation[0])); REQUIRE(b_to_a.rotation[1] * a_to_b.translation[0] + b_to_a.rotation[4] * a_to_b.translation[1] + b_to_a.rotation[7] * a_to_b.translation[2] == approx(-b_to_a.translation[1])); REQUIRE(b_to_a.rotation[2] * a_to_b.translation[0] + b_to_a.rotation[5] * a_to_b.translation[1] + b_to_a.rotation[8] * a_to_b.translation[2] == approx(-b_to_a.translation[2])); } } } } } TEST_CASE("Extrinsic transformations are transitive", "[live]") { // Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); // For each device for (auto&& dev : list) { auto adj_devices = ctx.get_sensor_parent(dev).query_sensors(); // For every set of subdevices for (auto a = 0; a < adj_devices.size(); ++a) { for (auto b = 0; b < adj_devices.size(); ++b) { for (auto c = 0; c < adj_devices.size(); ++c) { std::vector profs_a, profs_b, profs_c ; REQUIRE_NOTHROW(profs_a = adj_devices[a].get_stream_profiles()); REQUIRE(profs_a.size()>0); REQUIRE_NOTHROW(profs_b = adj_devices[b].get_stream_profiles()); REQUIRE(profs_b.size()>0); REQUIRE_NOTHROW(profs_c = adj_devices[c].get_stream_profiles()); REQUIRE(profs_c.size()>0); // Require that the composition of a_to_b and b_to_c is equal to a_to_c rs2_extrinsics a_to_b, b_to_c, a_to_c; try { a_to_b = profs_a[0].get_extrinsics_to(profs_b[0]); b_to_c = profs_b[0].get_extrinsics_to(profs_c[0]); a_to_c = profs_a[0].get_extrinsics_to(profs_c[0]); } catch (error &e) { WARN(e.what()); continue; } // a_to_c.rotation == a_to_b.rotation * b_to_c.rotation REQUIRE(a_to_c.rotation[0] == approx(a_to_b.rotation[0] * b_to_c.rotation[0] + a_to_b.rotation[3] * b_to_c.rotation[1] + a_to_b.rotation[6] * b_to_c.rotation[2])); REQUIRE(a_to_c.rotation[2] == approx(a_to_b.rotation[2] * b_to_c.rotation[0] + a_to_b.rotation[5] * b_to_c.rotation[1] + a_to_b.rotation[8] * b_to_c.rotation[2])); REQUIRE(a_to_c.rotation[1] == approx(a_to_b.rotation[1] * b_to_c.rotation[0] + a_to_b.rotation[4] * b_to_c.rotation[1] + a_to_b.rotation[7] * b_to_c.rotation[2])); REQUIRE(a_to_c.rotation[3] == approx(a_to_b.rotation[0] * b_to_c.rotation[3] + a_to_b.rotation[3] * b_to_c.rotation[4] + a_to_b.rotation[6] * b_to_c.rotation[5])); REQUIRE(a_to_c.rotation[4] == approx(a_to_b.rotation[1] * b_to_c.rotation[3] + a_to_b.rotation[4] * b_to_c.rotation[4] + a_to_b.rotation[7] * b_to_c.rotation[5])); REQUIRE(a_to_c.rotation[5] == approx(a_to_b.rotation[2] * b_to_c.rotation[3] + a_to_b.rotation[5] * b_to_c.rotation[4] + a_to_b.rotation[8] * b_to_c.rotation[5])); REQUIRE(a_to_c.rotation[6] == approx(a_to_b.rotation[0] * b_to_c.rotation[6] + a_to_b.rotation[3] * b_to_c.rotation[7] + a_to_b.rotation[6] * b_to_c.rotation[8])); REQUIRE(a_to_c.rotation[7] == approx(a_to_b.rotation[1] * b_to_c.rotation[6] + a_to_b.rotation[4] * b_to_c.rotation[7] + a_to_b.rotation[7] * b_to_c.rotation[8])); REQUIRE(a_to_c.rotation[8] == approx(a_to_b.rotation[2] * b_to_c.rotation[6] + a_to_b.rotation[5] * b_to_c.rotation[7] + a_to_b.rotation[8] * b_to_c.rotation[8])); // a_to_c.translation = a_to_b.transform(b_to_c.translation) REQUIRE(a_to_c.translation[0] == approx(a_to_b.rotation[0] * b_to_c.translation[0] + a_to_b.rotation[3] * b_to_c.translation[1] + a_to_b.rotation[6] * b_to_c.translation[2] + a_to_b.translation[0])); REQUIRE(a_to_c.translation[1] == approx(a_to_b.rotation[1] * b_to_c.translation[0] + a_to_b.rotation[4] * b_to_c.translation[1] + a_to_b.rotation[7] * b_to_c.translation[2] + a_to_b.translation[1])); REQUIRE(a_to_c.translation[2] == approx(a_to_b.rotation[2] * b_to_c.translation[0] + a_to_b.rotation[5] * b_to_c.translation[1] + a_to_b.rotation[8] * b_to_c.translation[2] + a_to_b.translation[2])); } } } } } } std::shared_ptr do_with_waiting_for_camera_connection(rs2::context ctx, std::shared_ptr dev, std::string serial, std::function operation) { std::mutex m; bool disconnected = false; bool connected = false; std::shared_ptr result; std::condition_variable cv; ctx.set_devices_changed_callback([&result, dev, &disconnected, &connected, &m, &cv, &serial](rs2::event_information info) mutable { if (info.was_removed(*dev)) { std::unique_lock lock(m); disconnected = true; cv.notify_all(); } auto list = info.get_new_devices(); if (list.size() > 0) { for (auto cam : list) { if (serial == cam.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) { std::unique_lock lock(m); connected = true; result = std::make_shared(cam); disable_sensitive_options_for(*result); cv.notify_all(); break; } } } }); operation(); std::unique_lock lock(m); REQUIRE(wait_for_reset([&]() { return cv.wait_for(lock, std::chrono::seconds(20), [&]() { return disconnected; }); }, dev)); REQUIRE(cv.wait_for(lock, std::chrono::seconds(20), [&]() { return connected; })); REQUIRE(result); return result; } TEST_CASE("Toggle Advanced Mode", "[live][AdvMd]") { for (int i = 0; i < 3; ++i) { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); REQUIRE(list.size() > 0); auto dev = std::make_shared(list.front()); disable_sensitive_options_for(*dev); std::string serial; REQUIRE_NOTHROW(serial = dev->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); if (dev->is()) { auto advanced = dev->as(); if (!advanced.is_enabled()) { dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(true)); }); } disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(advanced.is_enabled()); dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(false)); }); advanced = dev->as(); REQUIRE(!advanced.is_enabled()); } } } } TEST_CASE("Advanced Mode presets", "[live][AdvMd]") { static const std::vector resolutions = { low_resolution, medium_resolution, high_resolution }; rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); REQUIRE(list.size() > 0); auto dev = std::make_shared(list.front()); disable_sensitive_options_for(*dev); std::string serial; REQUIRE_NOTHROW(serial = dev->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); if (dev->is()) { auto advanced = dev->as(); if (!advanced.is_enabled()) { dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(true)); }); } disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(advanced.is_enabled()); auto sensors = dev->query_sensors(); sensor presets_sensor; for (sensor& elem : sensors) { auto supports = false; REQUIRE_NOTHROW(supports = elem.supports(RS2_OPTION_VISUAL_PRESET)); if (supports) { presets_sensor = elem; break; } } for (auto& res : resolutions) { std::vector sp = {get_profile_by_resolution_type(presets_sensor, res)}; presets_sensor.open(sp); presets_sensor.start([](rs2::frame) {}); for (auto i = 0; i < RS2_RS400_VISUAL_PRESET_COUNT; ++i) { auto preset = (rs2_rs400_visual_preset)i; CAPTURE(res); CAPTURE(preset); REQUIRE_NOTHROW(presets_sensor.set_option(RS2_OPTION_VISUAL_PRESET, (float)preset)); float ret_preset; REQUIRE_NOTHROW(ret_preset = presets_sensor.get_option(RS2_OPTION_VISUAL_PRESET)); REQUIRE(preset == (rs2_rs400_visual_preset)((int)ret_preset)); } presets_sensor.stop(); presets_sensor.close(); } dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(false)); }); disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(!advanced.is_enabled()); } } } TEST_CASE("Advanced Mode JSON", "[live][AdvMd]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); REQUIRE(list.size() > 0); auto dev = std::make_shared(list.front()); disable_sensitive_options_for(*dev); std::string serial; REQUIRE_NOTHROW(serial = dev->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); if (dev->is()) { auto advanced = dev->as(); if (!advanced.is_enabled()) { dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(true)); }); } disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(advanced.is_enabled()); auto sensors = dev->query_sensors(); sensor presets_sensor; for (sensor& elem : sensors) { auto supports = false; REQUIRE_NOTHROW(supports = elem.supports(RS2_OPTION_VISUAL_PRESET)); if (supports) { presets_sensor = elem; break; } } std::string json1, json2; REQUIRE_NOTHROW(json1 = advanced.serialize_json()); REQUIRE_NOTHROW(presets_sensor.set_option(RS2_OPTION_VISUAL_PRESET, RS2_RS400_VISUAL_PRESET_COUNT - 1)); REQUIRE_NOTHROW(advanced.load_json(json1)); REQUIRE_NOTHROW(json2 = advanced.serialize_json()); REQUIRE_NOTHROW(json1 == json2); dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(false)); }); disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(!advanced.is_enabled()); } } } TEST_CASE("Advanced Mode controls", "[live][AdvMd]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); REQUIRE(list.size() > 0); std::shared_ptr dev = std::make_shared(list.front()); if (dev->is()) { disable_sensitive_options_for(*dev); auto info = dev->get_info(RS2_CAMERA_INFO_NAME); CAPTURE(info); std::string serial; REQUIRE_NOTHROW(serial = dev->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); auto advanced = dev->as(); if (!advanced.is_enabled()) { dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(true)); }); } disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(advanced.is_enabled()); { STDepthControlGroup ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_depth_control(0)); STDepthControlGroup ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_depth_control(1)); STDepthControlGroup ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_depth_control(2)); REQUIRE_NOTHROW(advanced.set_depth_control(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_depth_control(0)); REQUIRE(ctrl_curr == ctrl_min); } { STRsm ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_rsm(0)); STRsm ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_rsm(1)); STRsm ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_rsm(2)); REQUIRE_NOTHROW(advanced.set_rsm(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_rsm(0)); REQUIRE(ctrl_curr == ctrl_min); } { STRauSupportVectorControl ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_rau_support_vector_control(0)); STRauSupportVectorControl ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_rau_support_vector_control(1)); STRauSupportVectorControl ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_rau_support_vector_control(2)); REQUIRE_NOTHROW(advanced.set_rau_support_vector_control(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_rau_support_vector_control(0)); REQUIRE(ctrl_curr == ctrl_min); } { STColorControl ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_color_control(0)); STColorControl ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_color_control(1)); STColorControl ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_color_control(2)); REQUIRE_NOTHROW(advanced.set_color_control(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_color_control(0)); REQUIRE(ctrl_curr == ctrl_min); } { STRauColorThresholdsControl ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_rau_thresholds_control(0)); STRauColorThresholdsControl ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_rau_thresholds_control(1)); STRauColorThresholdsControl ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_rau_thresholds_control(2)); REQUIRE_NOTHROW(advanced.set_rau_thresholds_control(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_rau_thresholds_control(0)); REQUIRE(ctrl_curr == ctrl_min); } { STSloColorThresholdsControl ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_slo_color_thresholds_control(0)); STSloColorThresholdsControl ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_slo_color_thresholds_control(1)); STSloColorThresholdsControl ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_slo_color_thresholds_control(2)); REQUIRE_NOTHROW(advanced.set_slo_color_thresholds_control(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_slo_color_thresholds_control(0)); REQUIRE(ctrl_curr == ctrl_min); } { STSloPenaltyControl ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_slo_penalty_control(0)); STSloPenaltyControl ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_slo_penalty_control(1)); STSloPenaltyControl ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_slo_penalty_control(2)); REQUIRE_NOTHROW(advanced.set_slo_penalty_control(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_slo_penalty_control(0)); REQUIRE(ctrl_curr == ctrl_min); } { STHdad ctrl_curr1{}; REQUIRE_NOTHROW(ctrl_curr1 = advanced.get_hdad(0)); REQUIRE_NOTHROW(advanced.set_hdad(ctrl_curr1)); STHdad ctrl_curr2{}; REQUIRE_NOTHROW(ctrl_curr2 = advanced.get_hdad(0)); REQUIRE(ctrl_curr1 == ctrl_curr2); } { STColorCorrection ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_color_correction(0)); STColorCorrection ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_color_correction(1)); STColorCorrection ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_color_correction(2)); REQUIRE_NOTHROW(advanced.set_color_correction(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_color_correction(0)); REQUIRE(ctrl_curr == ctrl_min); } { STAEControl ctrl_curr1{}; REQUIRE_NOTHROW(ctrl_curr1 = advanced.get_ae_control(0)); REQUIRE_NOTHROW(advanced.set_ae_control(ctrl_curr1)); STAEControl ctrl_curr2{}; REQUIRE_NOTHROW(ctrl_curr2 = advanced.get_ae_control(0)); REQUIRE(ctrl_curr1 == ctrl_curr2); } { STDepthTableControl ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_depth_table(0)); STDepthTableControl ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_depth_table(1)); STDepthTableControl ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_depth_table(2)); REQUIRE_NOTHROW(advanced.set_depth_table(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_depth_table(0)); REQUIRE(ctrl_curr == ctrl_min); } { STCensusRadius ctrl_curr{}; REQUIRE_NOTHROW(ctrl_curr = advanced.get_census(0)); STCensusRadius ctrl_min{}; REQUIRE_NOTHROW(ctrl_min = advanced.get_census(1)); STCensusRadius ctrl_max{}; REQUIRE_NOTHROW(ctrl_max = advanced.get_census(2)); REQUIRE_NOTHROW(advanced.set_census(ctrl_min)); REQUIRE_NOTHROW(ctrl_curr = advanced.get_census(0)); REQUIRE(ctrl_curr == ctrl_min); } dev = do_with_waiting_for_camera_connection(ctx, dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(false)); }); disable_sensitive_options_for(*dev); advanced = dev->as(); REQUIRE(!advanced.is_enabled()); } } } // the tests may incorrectly interpret changes to librealsense-core, namely default profiles selections TEST_CASE("Streaming modes sanity check", "[live][!mayfail]") { // Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); // For each device for (auto&& dev : list) { disable_sensitive_options_for(dev); std::string PID; REQUIRE_NOTHROW(PID = dev.get_info(RS2_CAMERA_INFO_PRODUCT_ID)); // make sure they provide at least one streaming mode std::vector stream_profiles; REQUIRE_NOTHROW(stream_profiles = dev.get_stream_profiles()); REQUIRE(stream_profiles.size() > 0); SECTION("check stream profile settings are sane") { // for each stream profile provided: for (auto profile : stream_profiles) { // require that the settings are sane REQUIRE(profile.format() > RS2_FORMAT_ANY); REQUIRE(profile.format() < RS2_FORMAT_COUNT); REQUIRE(profile.fps() >= 2); REQUIRE(profile.fps() <= 300); if (auto video = profile.as()) { REQUIRE(video.width() >= 320); REQUIRE(video.width() <= 1920); REQUIRE(video.height() >= 180); REQUIRE(video.height() <= 1080); } // require that we can start streaming this mode REQUIRE_NOTHROW(dev.open({ profile })); // TODO: make callback confirm stream format/dimensions/framerate REQUIRE_NOTHROW(dev.start([](rs2::frame fref) {})); // Require that we can disable the stream afterwards REQUIRE_NOTHROW(dev.stop()); REQUIRE_NOTHROW(dev.close()); } } SECTION("check stream intrinsics are sane") { for (auto profile : stream_profiles) { if (auto video = profile.as()) { rs2_intrinsics intrin; CAPTURE(video.stream_type()); CAPTURE(video.format()); CAPTURE(video.width()); CAPTURE(video.height()); bool calib_format = ( (RS2_FORMAT_Y16 == video.format()) && (RS2_STREAM_INFRARED == video.stream_type())); if (!calib_format) // intrinsics are not available for calibration formats { REQUIRE_NOTHROW(intrin = video.get_intrinsics()); // Intrinsic width/height must match width/height of streaming mode we requested REQUIRE(intrin.width == video.width()); REQUIRE(intrin.height == video.height()); // Principal point must be within center 20% of image REQUIRE(intrin.ppx > video.width() * 0.4f); REQUIRE(intrin.ppx < video.width() * 0.6f); REQUIRE(intrin.ppy > video.height() * 0.4f); REQUIRE(intrin.ppy < video.height() * 0.6f); // Focal length must be non-negative (todo - Refine requirements based on known expected FOV) REQUIRE(intrin.fx > 0.0f); REQUIRE(intrin.fy > 0.0f); } else { REQUIRE_THROWS(intrin = video.get_intrinsics()); } } } } } } } TEST_CASE("Motion profiles sanity", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); // For each device for (auto&& dev : list) { disable_sensitive_options_for(dev); // make sure they provide at least one streaming mode std::vector stream_profiles; REQUIRE_NOTHROW(stream_profiles = dev.get_stream_profiles()); REQUIRE(stream_profiles.size() > 0); // for each stream profile provided: for (auto profile : stream_profiles) { SECTION("check motion intrisics") { auto stream = profile.stream_type(); rs2_motion_device_intrinsic mm_int; CAPTURE(stream); if (stream == RS2_STREAM_ACCEL || stream == RS2_STREAM_GYRO) { auto motion = profile.as(); REQUIRE_NOTHROW(mm_int = motion.get_motion_intrinsics()); for (int j = 0; j < 3; j++) { auto scale = mm_int.data[j][j]; CAPTURE(scale); // Make sure scale value is "sane" // We don't expect Motion Device to require adjustment of more then 20% REQUIRE(scale > 0.8); REQUIRE(scale < 1.2); auto bias = mm_int.data[0][3]; CAPTURE(bias); // Make sure bias is "sane" REQUIRE(bias > -0.5); REQUIRE(bias < 0.5); } } } } } } } TEST_CASE("Check width and height of stream intrinsics", "[live][AdvMd]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector devs; REQUIRE_NOTHROW(devs = ctx.query_devices()); for (auto&& dev : devs) { auto shared_dev = std::make_shared(dev); disable_sensitive_options_for(dev); std::string serial; REQUIRE_NOTHROW(serial = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); std::string PID; REQUIRE_NOTHROW(PID = dev.get_info(RS2_CAMERA_INFO_PRODUCT_ID)); if (shared_dev->is()) { auto advanced = shared_dev->as(); if (advanced.is_enabled()) { shared_dev = do_with_waiting_for_camera_connection(ctx, shared_dev, serial, [&]() { REQUIRE_NOTHROW(advanced.toggle_advanced_mode(false)); }); } disable_sensitive_options_for(*shared_dev); advanced = shared_dev->as(); REQUIRE(advanced.is_enabled() == false); } std::vector list; REQUIRE_NOTHROW(list = shared_dev->query_sensors()); REQUIRE(list.size() > 0); for (auto&& dev : list) { disable_sensitive_options_for(dev); auto module_name = dev.get_info(RS2_CAMERA_INFO_NAME); // TODO: if FE std::vector stream_profiles; REQUIRE_NOTHROW(stream_profiles = dev.get_stream_profiles()); REQUIRE(stream_profiles.size() > 0); // for each stream profile provided: int i=0; for (const auto& profile : stream_profiles) { i++; if (auto video = profile.as()) { rs2_intrinsics intrin; CAPTURE(video.stream_type()); CAPTURE(video.format()); CAPTURE(video.width()); CAPTURE(video.height()); // Calibration formats does not provide intrinsic data bool calib_format = ( (RS2_FORMAT_Y16 == video.format()) && (RS2_STREAM_INFRARED == video.stream_type())); if (!calib_format) REQUIRE_NOTHROW(intrin = video.get_intrinsics()); else REQUIRE_THROWS(intrin = video.get_intrinsics()); // Intrinsic width/height must match width/height of streaming mode we requested REQUIRE(intrin.width == video.width()); REQUIRE(intrin.height == video.height()); } } } } } } TEST_CASE("Check option API", "[live][options]") { // Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); // for each device for (auto&& dev : list) { // for each option for (auto i = 0; i < RS2_OPTION_COUNT; ++i) { auto opt = rs2_option(i); bool is_opt_supported; REQUIRE_NOTHROW(is_opt_supported = dev.supports(opt)); SECTION("Ranges are sane") { if (!is_opt_supported) { REQUIRE_THROWS_AS(dev.get_option_range(opt), error); } else { rs2::option_range range; REQUIRE_NOTHROW(range = dev.get_option_range(opt)); // a couple sanity checks REQUIRE(range.min < range.max); REQUIRE(range.min + range.step <= range.max); REQUIRE(range.step > 0); REQUIRE(range.def <= range.max); REQUIRE(range.min <= range.def); // TODO: check that range.def == range.min + k*range.step for some k? // TODO: some sort of bounds checking against constants? } } SECTION("get_option returns a legal value") { if (!is_opt_supported) { REQUIRE_THROWS_AS(dev.get_option(opt), error); } else { auto range = dev.get_option_range(opt); float value; REQUIRE_NOTHROW(value = dev.get_option(opt)); // value in range. Do I need to account for epsilon in lt[e]/gt[e] comparisons? REQUIRE(value >= range.min); REQUIRE(value <= range.max); // value doesn't change between two gets (if no additional threads are calling set) REQUIRE(dev.get_option(opt) == approx(value)); // REQUIRE(value == approx(range.def)); // Not sure if this is a reasonable check // TODO: make sure value == range.min + k*range.step for some k? } } SECTION("set opt doesn't like bad values") { if (!is_opt_supported) { REQUIRE_THROWS_AS(dev.set_option(opt, 1), error); } else { auto range = dev.get_option_range(opt); // minimum should work, as should maximum REQUIRE_NOTHROW(dev.set_option(opt, range.min)); REQUIRE_NOTHROW(dev.set_option(opt, range.max)); int n_steps = int((range.max - range.min) / range.step); // check a few arbitrary points along the scale REQUIRE_NOTHROW(dev.set_option(opt, range.min + (1 % n_steps)*range.step)); REQUIRE_NOTHROW(dev.set_option(opt, range.min + (11 % n_steps)*range.step)); REQUIRE_NOTHROW(dev.set_option(opt, range.min + (111 % n_steps)*range.step)); REQUIRE_NOTHROW(dev.set_option(opt, range.min + (1111 % n_steps)*range.step)); // below min and above max shouldn't work REQUIRE_THROWS_AS(dev.set_option(opt, range.min - range.step), error); REQUIRE_THROWS_AS(dev.set_option(opt, range.max + range.step), error); // make sure requesting value in the range, but not a legal step doesn't work // TODO: maybe something for range.step < 1 ? for (auto j = 1; j < range.step; j++) { CAPTURE(range.step); CAPTURE(j); REQUIRE_THROWS_AS(dev.set_option(opt, range.min + j), error); } } } SECTION("check get/set sequencing works as expected") { if (!is_opt_supported) continue; auto range = dev.get_option_range(opt); // setting a valid value lets you get that value back dev.set_option(opt, range.min); REQUIRE(dev.get_option(opt) == approx(range.min)); // setting an invalid value returns the last set valid value. REQUIRE_THROWS(dev.set_option(opt, range.max + range.step)); REQUIRE(dev.get_option(opt) == approx(range.min)); dev.set_option(opt, range.max); REQUIRE_THROWS(dev.set_option(opt, range.min - range.step)); REQUIRE(dev.get_option(opt) == approx(range.max)); } SECTION("get_description returns a non-empty, non-null string") { if (!is_opt_supported) { REQUIRE_THROWS_AS(dev.get_option_description(opt), error); } else { REQUIRE(dev.get_option_description(opt) != nullptr); REQUIRE(std::string(dev.get_option_description(opt)) != std::string("")); } } // TODO: tests for get_option_value_description? possibly too open a function to have useful tests } } } } /// The test may fail due to changes in profiles list that do not indicate regression. /// TODO - refactoring required to make the test agnostic to changes imposed by librealsense core TEST_CASE("Multiple devices", "[live][multicam][!mayfail]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { // Require at least one device to be plugged in std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); SECTION("subdevices on a single device") { for (auto & dev : list) { disable_sensitive_options_for(dev); SECTION("opening the same subdevice multiple times") { auto modes = dev.get_stream_profiles(); REQUIRE(modes.size() > 0); CAPTURE(modes.front().stream_type()); REQUIRE_NOTHROW(dev.open(modes.front())); SECTION("same mode") { // selected, but not streaming REQUIRE_THROWS_AS(dev.open({ modes.front() }), error); // streaming REQUIRE_NOTHROW(dev.start([](rs2::frame fref) {})); REQUIRE_THROWS_AS(dev.open({ modes.front() }), error); } SECTION("different modes") { if (modes.size() == 1) { WARN("device " << dev.get_info(RS2_CAMERA_INFO_NAME) << " S/N: " << dev.get_info( RS2_CAMERA_INFO_SERIAL_NUMBER) << " w/ FW v" << dev.get_info( RS2_CAMERA_INFO_FIRMWARE_VERSION) << ":"); WARN("subdevice has only 1 supported streaming mode. Skipping Same Subdevice, different modes test."); } else { // selected, but not streaming REQUIRE_THROWS_AS(dev.open({ modes[1] }), error); // streaming REQUIRE_NOTHROW(dev.start([](rs2::frame fref) {})); REQUIRE_THROWS_AS(dev.open({ modes[1] }), error); } } REQUIRE_NOTHROW(dev.stop()); } // TODO: Move SECTION("opening different subdevices") { for (auto&& subdevice1 : ctx.get_sensor_parent(dev).query_sensors()) { disable_sensitive_options_for(subdevice1); for (auto&& subdevice2 : ctx.get_sensor_parent(dev).query_sensors()) { disable_sensitive_options_for(subdevice2); if (subdevice1 == subdevice2) continue; // get first lock REQUIRE_NOTHROW(subdevice1.open(subdevice1.get_stream_profiles().front())); // selected, but not streaming { auto profile = subdevice2.get_stream_profiles().front(); CAPTURE(profile.stream_type()); CAPTURE(profile.format()); CAPTURE(profile.fps()); auto vid_p = profile.as(); CAPTURE(vid_p.width()); CAPTURE(vid_p.height()); REQUIRE_NOTHROW(subdevice2.open(subdevice2.get_stream_profiles().front())); REQUIRE_NOTHROW(subdevice2.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(subdevice2.stop()); REQUIRE_NOTHROW(subdevice2.close()); } // streaming { REQUIRE_NOTHROW(subdevice1.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(subdevice2.open(subdevice2.get_stream_profiles().front())); REQUIRE_NOTHROW(subdevice2.start([](rs2::frame fref) {})); // stop streaming in opposite order just to be sure that works too REQUIRE_NOTHROW(subdevice1.stop()); REQUIRE_NOTHROW(subdevice2.stop()); REQUIRE_NOTHROW(subdevice2.close()); } REQUIRE_NOTHROW(subdevice1.close()); } } } } } SECTION("multiple devices") { if (list.size() == 1) { WARN("Only one device connected. Skipping multi-device test"); } else { for (auto & dev1 : list) { disable_sensitive_options_for(dev1); for (auto & dev2 : list) { // couldn't think of a better way to compare the two... if (dev1 == dev2) continue; disable_sensitive_options_for(dev2); auto dev1_profiles = dev1.get_stream_profiles(); auto dev2_profiles = dev2.get_stream_profiles(); if (!dev1_profiles.size() || !dev2_profiles.size()) continue; auto dev1_profile = dev1_profiles.front(); auto dev2_profile = dev2_profiles.front(); CAPTURE(dev1_profile.stream_type()); CAPTURE(dev1_profile.format()); CAPTURE(dev1_profile.fps()); auto vid_p1 = dev1_profile.as(); CAPTURE(vid_p1.width()); CAPTURE(vid_p1.height()); CAPTURE(dev2_profile.stream_type()); CAPTURE(dev2_profile.format()); CAPTURE(dev2_profile.fps()); auto vid_p2 = dev2_profile.as(); CAPTURE(vid_p2.width()); CAPTURE(vid_p2.height()); REQUIRE_NOTHROW(dev1.open(dev1_profile)); REQUIRE_NOTHROW(dev2.open(dev2_profile)); REQUIRE_NOTHROW(dev1.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(dev2.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(dev1.stop()); REQUIRE_NOTHROW(dev2.stop()); REQUIRE_NOTHROW(dev1.close()); REQUIRE_NOTHROW(dev2.close()); } } } } } } // On Windows 10 RS2 there is an unusual behaviour that may fail this test: // When trying to enable the second instance of Source Reader, instead of failing, the Media Foundation allows it // and sends an HR to the first Source Reader instead (something about the application being preempted) TEST_CASE("Multiple applications", "[live][multicam][!mayfail]") { rs2::context ctx1; if (make_context(SECTION_FROM_TEST_NAME, &ctx1)) { // Require at least one device to be plugged in std::vector list1; REQUIRE_NOTHROW(list1 = ctx1.query_all_sensors()); REQUIRE(list1.size() > 0); rs2::context ctx2; REQUIRE(make_context("two_contexts", &ctx2)); std::vector list2; REQUIRE_NOTHROW(list2 = ctx2.query_all_sensors()); REQUIRE(list2.size() == list1.size()); SECTION("subdevices on a single device") { for (auto&& dev1 : list1) { disable_sensitive_options_for(dev1); for (auto&& dev2 : list2) { disable_sensitive_options_for(dev2); if (dev1 == dev2) { bool skip_section = false; #ifdef _WIN32 skip_section = true; #endif if (!skip_section) { SECTION("same subdevice") { // get modes std::vector modes1, modes2; REQUIRE_NOTHROW(modes1 = dev1.get_stream_profiles()); REQUIRE_NOTHROW(modes2 = dev2.get_stream_profiles()); REQUIRE(modes1.size() > 0); REQUIRE(modes1.size() == modes2.size()); // require that the lists are the same (disregarding order) for (auto profile : modes1) { REQUIRE(std::any_of(begin(modes2), end(modes2), [&profile](const rs2::stream_profile & p) { return profile == p; })); } // grab first lock CAPTURE(modes1.front().stream_name()); REQUIRE_NOTHROW(dev1.open(modes1.front())); SECTION("same mode") { // selected, but not streaming REQUIRE_THROWS_AS(dev2.open({ modes1.front() }), error); // streaming REQUIRE_NOTHROW(dev1.start([](rs2::frame fref) {})); REQUIRE_THROWS_AS(dev2.open({ modes1.front() }), error); } SECTION("different modes") { if (modes1.size() == 1) { WARN("device " << dev1.get_info(RS2_CAMERA_INFO_NAME) << " S/N: " << dev1.get_info( RS2_CAMERA_INFO_SERIAL_NUMBER) << " w/ FW v" << dev1.get_info( RS2_CAMERA_INFO_FIRMWARE_VERSION) << ":"); WARN("Device has only 1 supported streaming mode. Skipping Same Subdevice, different modes test."); } else { // selected, but not streaming REQUIRE_THROWS_AS(dev2.open({ modes1[1] }), error); // streaming REQUIRE_NOTHROW(dev1.start([](rs2::frame fref) {})); REQUIRE_THROWS_AS(dev2.open({ modes1[1] }), error); } } REQUIRE_NOTHROW(dev1.stop()); } } } else { SECTION("different subdevice") { // get first lock REQUIRE_NOTHROW(dev1.open(dev1.get_stream_profiles().front())); // selected, but not streaming { CAPTURE(dev2.get_stream_profiles().front().stream_type()); REQUIRE_NOTHROW(dev2.open(dev2.get_stream_profiles().front())); REQUIRE_NOTHROW(dev2.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(dev2.stop()); REQUIRE_NOTHROW(dev2.close()); } // streaming { REQUIRE_NOTHROW(dev1.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(dev2.open(dev2.get_stream_profiles().front())); REQUIRE_NOTHROW(dev2.start([](rs2::frame fref) {})); // stop streaming in opposite order just to be sure that works too REQUIRE_NOTHROW(dev1.stop()); REQUIRE_NOTHROW(dev2.stop()); REQUIRE_NOTHROW(dev1.close()); REQUIRE_NOTHROW(dev2.close()); } } } } } } SECTION("subdevices on separate devices") { if (list1.size() == 1) { WARN("Only one device connected. Skipping multi-device test"); } else { for (auto & dev1 : list1) { disable_sensitive_options_for(dev1); for (auto & dev2 : list2) { disable_sensitive_options_for(dev2); if (dev1 == dev2) continue; // get modes std::vector modes1, modes2; REQUIRE_NOTHROW(modes1 = dev1.get_stream_profiles()); REQUIRE_NOTHROW(modes2 = dev2.get_stream_profiles()); REQUIRE(modes1.size() > 0); REQUIRE(modes2.size() > 0); // grab first lock CAPTURE(modes1.front().stream_type()); CAPTURE(dev1.get_info(RS2_CAMERA_INFO_NAME)); CAPTURE(dev1.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); CAPTURE(dev2.get_info(RS2_CAMERA_INFO_NAME)); CAPTURE(dev2.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); REQUIRE_NOTHROW(dev1.open(modes1.front())); // try to acquire second lock // selected, but not streaming { REQUIRE_NOTHROW(dev2.open({ modes2.front() })); REQUIRE_NOTHROW(dev2.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(dev2.stop()); REQUIRE_NOTHROW(dev2.close()); } // streaming { REQUIRE_NOTHROW(dev1.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(dev2.open({ modes2.front() })); REQUIRE_NOTHROW(dev2.start([](rs2::frame fref) {})); // stop streaming in opposite order just to be sure that works too REQUIRE_NOTHROW(dev1.stop()); REQUIRE_NOTHROW(dev2.stop()); REQUIRE_NOTHROW(dev2.close()); } REQUIRE_NOTHROW(dev1.close()); } } } } } } // ///* Apply heuristic test to check metadata attributes for sanity*/ void metadata_verification(const std::vector& data) { // Heuristics that we use to verify metadata // Metadata sanity // Frame numbers and timestamps increase monotonically // Sensor timestamp should be less or equal to frame timestamp // Exposure time and gain values are greater than zero // Sensor framerate is bounded to >0 and < 200 fps for uvc streams int64_t last_val[3] = { -1, -1, -1 }; for (size_t i = 0; i < data.size(); i++) { // Check that Frame/Sensor timetamps, frame number rise monotonically for (int j = RS2_FRAME_METADATA_FRAME_COUNTER; j <= RS2_FRAME_METADATA_SENSOR_TIMESTAMP; j++) { if (data[i].frame_md.md_attributes[j].first) { int64_t value = data[i].frame_md.md_attributes[j].second; CAPTURE(value); CAPTURE(last_val[j]); REQUIRE_NOTHROW((value > last_val[0])); if (RS2_FRAME_METADATA_FRAME_COUNTER == j) // In addition, there shall be no frame number gaps { REQUIRE_NOTHROW((1 == (value - last_val[j]))); } last_val[j] = data[i].frame_md.md_attributes[j].second; } } // // Exposure time and gain values are greater than zero // if (data[i].frame_md.md_attributes[RS2_FRAME_METADATA_ACTUAL_EXPOSURE].first) // REQUIRE(data[i].frame_md.md_attributes[RS2_FRAME_METADATA_ACTUAL_EXPOSURE].second > 0); // if (data[i].frame_md.md_attributes[RS2_FRAME_METADATA_GAIN_LEVEL].first) // REQUIRE(data[i].frame_md.md_attributes[RS2_FRAME_METADATA_GAIN_LEVEL].second > 0); } } ////serialize_json void trigger_error(const rs2::device& dev, int num) { int opcode = 0x4d; if (auto debug = dev.as()) { auto& raw_data = debug.build_raw_data(opcode, num) debug.send_and_receive_raw_data(raw_data); } } TEST_CASE("Error handling sanity", "[live][!mayfail]") { //Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); std::string notification_description; rs2_log_severity severity; std::condition_variable cv; std::mutex m; // An exempt of possible error values - note that the full list is available to Librealsenes core const std::map< uint8_t, std::string> error_report = { { 0, "Success" }, { 1, "Laser hot - power reduce" }, { 2, "Laser hot - disabled" }, { 3, "Flag B - laser disabled" }, }; //enable error polling for (auto && subdevice : list) { if (subdevice.supports(RS2_OPTION_ERROR_POLLING_ENABLED)) { disable_sensitive_options_for(subdevice); subdevice.set_notifications_callback([&](rs2::notification n) { std::unique_lock lock(m); notification_description = n.get_description(); severity = n.get_severity(); cv.notify_one(); }); REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_ERROR_POLLING_ENABLED, 1)); // The first entry with success value cannot be emulated for (auto i = 1; i < error_report.size(); i++) { trigger_error(ctx.get_sensor_parent(subdevice), i); std::unique_lock lock(m); CAPTURE(i); CAPTURE(error_report.at(i)); CAPTURE(severity); auto pred = [&]() { return notification_description.compare(error_report.at(i)) == 0 && severity == RS2_LOG_SEVERITY_ERROR; }; REQUIRE(cv.wait_for(lock, std::chrono::seconds(10), pred)); } REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_ERROR_POLLING_ENABLED, 0)); } } } } TEST_CASE("Auto disabling control behavior", "[live]") { //Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); for (auto && subdevice : list) { disable_sensitive_options_for(subdevice); auto info = subdevice.get_info(RS2_CAMERA_INFO_NAME); CAPTURE(info); rs2::option_range range{}; float val{}; if (subdevice.supports(RS2_OPTION_ENABLE_AUTO_EXPOSURE)) { SECTION("Disable auto exposure when setting a value") { REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE, 1)); REQUIRE_NOTHROW(range = subdevice.get_option_range(RS2_OPTION_EXPOSURE)); REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_EXPOSURE, range.max)); CAPTURE(range.max); REQUIRE_NOTHROW(val = subdevice.get_option(RS2_OPTION_ENABLE_AUTO_EXPOSURE)); REQUIRE(val == 0); } } if (subdevice.supports(RS2_OPTION_EMITTER_ENABLED)) { SECTION("Disable emitter when setting a value") { for (auto elem : { 0.f, 2.f }) { REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_EMITTER_ENABLED, elem)); REQUIRE_NOTHROW(range = subdevice.get_option_range(RS2_OPTION_LASER_POWER)); REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_LASER_POWER, range.max)); CAPTURE(range.max); REQUIRE_NOTHROW(val = subdevice.get_option(RS2_OPTION_EMITTER_ENABLED)); REQUIRE(val == 1); } } } if (subdevice.supports(RS2_OPTION_ENABLE_AUTO_WHITE_BALANCE)) { SECTION("Disable white balance when setting a value") { if (subdevice.supports(RS2_OPTION_ENABLE_AUTO_WHITE_BALANCE) && subdevice.supports(RS2_OPTION_WHITE_BALANCE)) { REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_ENABLE_AUTO_WHITE_BALANCE, 1)); REQUIRE_NOTHROW(range = subdevice.get_option_range(RS2_OPTION_WHITE_BALANCE)); REQUIRE_NOTHROW(subdevice.set_option(RS2_OPTION_WHITE_BALANCE, range.max)); CAPTURE(range.max); REQUIRE_NOTHROW(val = subdevice.get_option(RS2_OPTION_ENABLE_AUTO_WHITE_BALANCE)); REQUIRE(val == 0); } } } } } } std::pair, std::weak_ptr> make_device(device_list& list) { REQUIRE(list.size() > 0); std::shared_ptr dev; REQUIRE_NOTHROW(dev = std::make_shared(list[0])); std::weak_ptr weak_dev(dev); disable_sensitive_options_for(*dev); return std::pair, std::weak_ptr>(dev, weak_dev); } void reset_device(std::shared_ptr& strong, std::weak_ptr& weak, device_list& list, const rs2::device& new_dev) { strong.reset(); weak.reset(); list = nullptr; strong = std::make_shared(new_dev); weak = strong; disable_sensitive_options_for(*strong); } TEST_CASE("Disconnect events works", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); auto dev = make_device(list); auto dev_strong = dev.first; auto dev_weak = dev.second; auto disconnected = false; auto connected = false; std::string serial; REQUIRE_NOTHROW(serial = dev_strong->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); std::condition_variable cv; std::mutex m; //Setting up devices change callback to notify the test about device disconnection REQUIRE_NOTHROW(ctx.set_devices_changed_callback([&, dev_weak](event_information& info) mutable { auto&& strong = dev_weak.lock(); { if (strong) { if (info.was_removed(*strong)) { std::unique_lock lock(m); disconnected = true; cv.notify_one(); } for (auto d : info.get_new_devices()) { for (auto&& s : d.query_sensors()) disable_sensitive_options_for(s); if (serial == d.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) { try { std::unique_lock lock(m); connected = true; cv.notify_one(); break; } catch (...) { } } } } }})); //forcing hardware reset to simulate device disconnection do_with_waiting_for_camera_connection(ctx, dev_strong, serial, [&]() { dev_strong->hardware_reset(); }); //Check that after the library reported device disconnection, operations on old device object will return error REQUIRE_THROWS(dev_strong->query_sensors().front().close()); } } TEST_CASE("Connect events works", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); auto dev = make_device(list); auto dev_strong = dev.first; auto dev_weak = dev.second; std::string serial; REQUIRE_NOTHROW(serial = dev_strong->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); auto disconnected = false; auto connected = false; std::condition_variable cv; std::mutex m; //Setting up devices change callback to notify the test about device disconnection and connection REQUIRE_NOTHROW(ctx.set_devices_changed_callback([&, dev_weak](event_information& info) mutable { auto&& strong = dev_weak.lock(); { if (strong) { if (info.was_removed(*strong)) { std::unique_lock lock(m); disconnected = true; cv.notify_one(); } for (auto d : info.get_new_devices()) { if (serial == d.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) { try { std::unique_lock lock(m); reset_device(dev_strong, dev_weak, list, d); connected = true; cv.notify_one(); break; } catch (...) { } } } } }})); //forcing hardware reset to simulate device disconnection do_with_waiting_for_camera_connection(ctx, dev_strong, serial, [&]() { dev_strong->hardware_reset(); }); } } std::shared_ptr> check_stream_sanity(const rs2::context& ctx, const rs2::sensor& sub, int num_of_frames, bool infinite = false) { std::shared_ptr cv = std::make_shared(); std::shared_ptr m = std::make_shared(); std::shared_ptr> streams_frames = std::make_shared>(); std::shared_ptr> func; std::vector modes; REQUIRE_NOTHROW(modes = sub.get_stream_profiles()); auto streaming = false; for (auto p : modes) { if (auto video = p.as()) { if (video.width() == 640 && video.height() == 480 && video.fps() == 60 && video.format()) { if ((video.stream_type() == RS2_STREAM_DEPTH && video.format() == RS2_FORMAT_Z16) || (video.stream_type() == RS2_STREAM_FISHEYE && video.format() == RS2_FORMAT_RAW8)) { streaming = true; (*streams_frames)[p.stream_type()] = 0; REQUIRE_NOTHROW(sub.open(p)); func = std::make_shared< std::function>([num_of_frames, m, streams_frames, cv](rs2::frame fref) mutable { std::unique_lock lock(*m); auto stream = fref.get_profile().stream_type(); streams_frames->at(stream)++; if (streams_frames->at(stream) >= num_of_frames) cv->notify_one(); }); REQUIRE_NOTHROW(sub.start(*func)); } } } } std::unique_lock lock(*m); cv->wait_for(lock, std::chrono::seconds(30), [&] { for (auto f : (*streams_frames)) { if (f.second < num_of_frames) return false; } return true; }); if (!infinite && streaming) { REQUIRE_NOTHROW(sub.stop()); REQUIRE_NOTHROW(sub.close()); } return func; } TEST_CASE("Connect Disconnect events while streaming", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); std::string serial; auto dev = make_device(list); auto dev_strong = dev.first; auto dev_weak = dev.second; REQUIRE_NOTHROW(serial = dev_strong->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); auto disconnected = false; auto connected = false; std::condition_variable cv; std::mutex m; //Setting up devices change callback to notify the test about device disconnection and connection REQUIRE_NOTHROW(ctx.set_devices_changed_callback([&, dev_weak](event_information& info) mutable { auto&& strong = dev_weak.lock(); { if (strong) { if (info.was_removed(*strong)) { std::unique_lock lock(m); disconnected = true; cv.notify_one(); } for (auto d : info.get_new_devices()) { if (serial == d.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) { try { std::unique_lock lock(m); reset_device(dev_strong, dev_weak, list, d); connected = true; cv.notify_one(); break; } catch (...) { } } } } }})); for (auto&& s : dev_strong->query_sensors()) auto func = check_stream_sanity(ctx, s, 1, true); for (auto i = 0; i < 3; i++) { //forcing hardware reset to simulate device disconnection dev_strong = do_with_waiting_for_camera_connection(ctx, dev_strong, serial, [&]() { dev_strong->hardware_reset(); }); for (auto&& s : dev_strong->query_sensors()) auto func = check_stream_sanity(ctx, s, 10); disconnected = connected = false; } } } void check_controls_sanity(const rs2::context& ctx, const sensor& dev) { for (auto d : ctx.get_sensor_parent(dev).query_sensors()) { for (auto i = 0; i < RS2_OPTION_COUNT; i++) { if (d.supports((rs2_option)i)) REQUIRE_NOTHROW(d.get_option((rs2_option)i)); } } } // TEST_CASE("Connect Disconnect events while controls", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_list list; REQUIRE_NOTHROW(list = ctx.query_devices()); auto dev = make_device(list); auto dev_strong = dev.first; auto dev_weak = dev.second; std::string serial; REQUIRE_NOTHROW(serial = dev_strong->get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); auto disconnected = false; auto connected = false; std::condition_variable cv; std::mutex m; //Setting up devices change callback to notify the test about device disconnection and connection REQUIRE_NOTHROW(ctx.set_devices_changed_callback([&, dev_weak](event_information& info) mutable { auto&& strong = dev_weak.lock(); { if (strong) { if (info.was_removed(*strong)) { std::unique_lock lock(m); disconnected = true; cv.notify_one(); } for (auto d : info.get_new_devices()) { if (serial == d.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) { try { std::unique_lock lock(m); reset_device(dev_strong, dev_weak, list, d); connected = true; cv.notify_one(); break; } catch (...) { } } } } }})); //forcing hardware reset to simulate device disconnection dev_strong = do_with_waiting_for_camera_connection(ctx, dev_strong, serial, [&]() { dev_strong->hardware_reset(); }); for (auto&& s : dev_strong->query_sensors()) check_controls_sanity(ctx, s); } } TEST_CASE("Basic device_hub flow", "[live][!mayfail]") { rs2::context ctx; std::shared_ptr dev; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { device_hub hub(ctx); REQUIRE_NOTHROW(dev = std::make_shared(hub.wait_for_device())); std::weak_ptr weak(dev); disable_sensitive_options_for(*dev); dev->hardware_reset(); int i = 300; while (i > 0 && hub.is_connected(*dev)) { std::this_thread::sleep_for(std::chrono::milliseconds(10)); --i; } /*if (i == 0) { WARN("Reset workaround"); dev->hardware_reset(); while (hub.is_connected(*dev)) std::this_thread::sleep_for(std::chrono::milliseconds(10)); }*/ // Don't exit the test in unknown state REQUIRE_NOTHROW(hub.wait_for_device()); } } struct stream_format { rs2_stream stream_type; int width; int height; int fps; rs2_format format; int index; }; TEST_CASE("Auto-complete feature works", "[offline][util::config]") { // dummy device can provide the following profiles: rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { struct Test { std::vector given; // We give these profiles to the config class std::vector expected; // pool of profiles the config class can return. Leave empty if auto-completer is expected to fail }; std::vector tests = { // Test 0 (Depth always has RS2_FORMAT_Z16) { { { RS2_STREAM_DEPTH , 0, 0, 0, RS2_FORMAT_ANY, 0 } }, // given { { RS2_STREAM_DEPTH , 0, 0, 0, RS2_FORMAT_Z16, 0 } } }, // expected // Test 1 (IR always has RS2_FORMAT_Y8) { { { RS2_STREAM_INFRARED, 0, 0, 0, RS2_FORMAT_ANY, 1 } }, // given { { RS2_STREAM_INFRARED, 0, 0, 0, RS2_FORMAT_Y8 , 1 } } }, // expected // Test 2 (No 200 fps depth) { { { RS2_STREAM_DEPTH , 0, 0, 200, RS2_FORMAT_ANY, -1 } }, // given { } }, // expected // Test 3 (Can request 60 fps IR) { { { RS2_STREAM_INFRARED, 0, 0, 60, RS2_FORMAT_ANY, 1 } }, // given { { RS2_STREAM_INFRARED, 0, 0, 60, RS2_FORMAT_ANY, 1 } } }, // expected // Test 4 (requesting IR@200fps + depth fails { { { RS2_STREAM_INFRARED, 0, 0, 200, RS2_FORMAT_ANY, 1 }, { RS2_STREAM_DEPTH , 0, 0, 0, RS2_FORMAT_ANY, -1 } }, // given { } }, // expected // Test 5 (Can't do 640x480@110fps a) { { { RS2_STREAM_INFRARED, 640, 480, 110, RS2_FORMAT_ANY, -1 } }, // given { } }, // expected // Test 6 (Can't do 640x480@110fps b) { { { RS2_STREAM_DEPTH , 640, 480, 0, RS2_FORMAT_ANY, -1 }, { RS2_STREAM_INFRARED, 0, 0, 110, RS2_FORMAT_ANY, 1 } }, // given { } }, // expected // Test 7 (Pull extra details from second stream a) { { { RS2_STREAM_DEPTH , 640, 480, 0, RS2_FORMAT_ANY, -1 }, { RS2_STREAM_INFRARED, 0, 0, 30, RS2_FORMAT_ANY, 1 } }, // given { { RS2_STREAM_DEPTH , 640, 480, 30, RS2_FORMAT_ANY, 0 }, { RS2_STREAM_INFRARED, 640, 480, 30, RS2_FORMAT_ANY, 1 } } }, // expected // Test 8 (Pull extra details from second stream b) [IR also supports 200, could fail if that gets selected] { { { RS2_STREAM_INFRARED, 640, 480, 0, RS2_FORMAT_ANY, 1 }, { RS2_STREAM_DEPTH , 0, 0, 0, RS2_FORMAT_ANY , 0 } }, // given { { RS2_STREAM_INFRARED, 640, 480, 10, RS2_FORMAT_ANY, 1 }, { RS2_STREAM_INFRARED, 640, 480, 30, RS2_FORMAT_ANY , 1 }, // expected - options for IR stream { RS2_STREAM_DEPTH , 640, 480, 10, RS2_FORMAT_ANY, 0 }, { RS2_STREAM_DEPTH , 640, 480, 30, RS2_FORMAT_ANY , 0 } } } // expected - options for depth stream }; pipeline pipe(ctx); rs2::config cfg; for (int i = 0; i < tests.size(); ++i) { cfg.disable_all_streams(); for (auto & profile : tests[i].given) { REQUIRE_NOTHROW(cfg.enable_stream(profile.stream_type, profile.index, profile.width, profile.height, profile.format, profile.fps)); } CAPTURE(i); if (tests[i].expected.size() == 0) { REQUIRE_THROWS_AS(pipe.start(cfg), std::runtime_error); } else { rs2::pipeline_profile pipe_profile; REQUIRE_NOTHROW(pipe_profile = pipe.start(cfg)); //REQUIRE()s are in here REQUIRE(pipe_profile); REQUIRE_NOTHROW(pipe.stop()); } } } } //TODO: make it work //TEST_CASE("Sync connect disconnect", "[live]") { // rs2::context ctx; // // if (make_context(SECTION_FROM_TEST_NAME, &ctx)) // { // auto list = ctx.query_devices(); // REQUIRE(list.size()); // pipeline pipe(ctx); // auto dev = pipe.get_device(); // // disable_sensitive_options_for(dev); // // // auto profiles = configure_all_supported_streams(dev, dev); // // // pipe.start(); // // std::string serial; // REQUIRE_NOTHROW(serial = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); // // auto disconnected = false; // auto connected = false; // std::condition_variable cv; // std::mutex m; // // //Setting up devices change callback to notify the test about device disconnection and connection // REQUIRE_NOTHROW(ctx.set_devices_changed_callback([&](event_information& info) mutable // { // std::unique_lock lock(m); // if (info.was_removed(dev)) // { // // try { // pipe.stop(); // pipe.disable_all(); // dev = nullptr; // } // catch (...) {}; // disconnected = true; // cv.notify_one(); // } // // auto devs = info.get_new_devices(); // if (devs.size() > 0) // { // dev = pipe.get_device(); // std::string new_serial; // REQUIRE_NOTHROW(new_serial = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); // if (serial == new_serial) // { // disable_sensitive_options_for(dev); // // auto profiles = configure_all_supported_streams(dev, pipe); // // pipe.start(); // // connected = true; // cv.notify_one(); // } // } // // })); // // // for (auto i = 0; i < 5; i++) // { // auto frames = pipe.wait_for_frames(10000); // REQUIRE(frames.size() > 0); // } // // { // std::unique_lock lock(m); // disconnected = connected = false; // auto shared_dev = std::make_shared(dev); // dev.hardware_reset(); // // REQUIRE(wait_for_reset([&]() { // return cv.wait_for(lock, std::chrono::seconds(20), [&]() {return disconnected; }); // }, shared_dev)); // REQUIRE(cv.wait_for(lock, std::chrono::seconds(20), [&]() {return connected; })); // } // // for (auto i = 0; i < 5; i++) // { // auto frames = pipe.wait_for_frames(10000); // REQUIRE(frames.size() > 0); // // } // } //} void validate(std::vector> frames, std::vector> timestamps, device_profiles requests, int actual_fps) { REQUIRE(frames.size() > 0); int successful = 0; auto gap = (float)1000 / (float)actual_fps; auto ts = 0; std::vector actual_streams_arrived; for (auto i = 0; i < frames.size(); i++) { auto frame = frames[i]; auto ts = timestamps[i]; if (frame.size() == 0) { CAPTURE(frame.size()); continue; } std::vector stream_arrived; for (auto f : frame) { auto image = f.as(); stream_arrived.push_back({ image.stream_type(), image.format(), image.width(), image.height() }); REQUIRE(image.fps()); } std::sort(ts.begin(), ts.end()); if (ts[ts.size() - 1] - ts[0] > (float)gap / (float)2) { CAPTURE(gap); CAPTURE((float)gap / (float)2); CAPTURE(ts[ts.size() - 1]); CAPTURE(ts[0]); CAPTURE(ts[ts.size() - 1] - ts[0]); continue; } for (auto& str : stream_arrived) actual_streams_arrived.push_back(str); if (stream_arrived.size() != requests.streams.size()) continue; std::sort(stream_arrived.begin(), stream_arrived.end()); std::sort(requests.streams.begin(), requests.streams.end()); auto equals = true; for (auto i = 0; i < requests.streams.size(); i++) { if (stream_arrived[i] != requests.streams[i]) { equals = false; break; } } if (!equals) continue; successful++; } std::stringstream ss; ss << "Requested profiles : " << std::endl; for (auto prof : requests.streams) { //ss << STRINGIFY(prof.stream) << " = " << prof.stream << std::endl; //ss << STRINGIFY(prof.format) << " = " << prof.format << std::endl; ss << STRINGIFY(prof.width) << " = " << prof.width << std::endl; ss << STRINGIFY(prof.height) << " = " << prof.height << std::endl; ss << STRINGIFY(prof.index) << " = " << prof.index << std::endl; } CAPTURE(ss.str()); CAPTURE(requests.fps); CAPTURE(requests.sync); ss.str(""); ss << "\n\nReceived profiles : " << std::endl; std::sort(actual_streams_arrived.begin(), actual_streams_arrived.end()); auto last = std::unique(actual_streams_arrived.begin(), actual_streams_arrived.end()); actual_streams_arrived.erase(last, actual_streams_arrived.end()); for (auto prof : actual_streams_arrived) { ss << STRINGIFY(prof.stream) << " = " << int(prof.stream) << std::endl; ss << STRINGIFY(prof.format) << " = " << int(prof.format) << std::endl; ss << STRINGIFY(prof.width) << " = " << prof.width << std::endl; ss << STRINGIFY(prof.height) << " = " << prof.height << std::endl; ss << STRINGIFY(prof.index) << " = " << prof.index << std::endl; } CAPTURE(ss.str()); REQUIRE(successful > 0); } static const std::map< dev_type, device_profiles> pipeline_default_configurations = { /* RS400/PSR*/ { { "0AD1", true} ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true}}, /* RS410/ASR*/ { { "0AD2", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true }}, /* D410/USB2*/ { { "0AD2", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 15, true } }, /* RS415/ASRC*/ { { "0AD3", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true }}, /* D415/USB2*/ { { "0AD3", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 640, 480, 0 } }, 15, true } }, /* RS430/AWG*/ { { "0AD4", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 } }, 30, true }}, /* RS430_MM/AWGT*/ { { "0AD5", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true }}, /* RS420/PWG*/ { { "0AF6", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true }}, /* RS420_MM/PWGT*/ { { "0AFE", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true }}, /* RS410_MM/ASRT*/ { { "0AFF", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true } }, /* RS400_MM/PSR*/ { { "0B00", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true } }, /* RS430_MM_RGB/AWGTC*/ { { "0B01", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true }}, /* RS405/DS5U*/ { { "0B03", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true }}, /* RS435_RGB/AWGC*/ { { "0B07", true } ,{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 1280, 720, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true }}, /* D435/USB2*/ { { "0B07", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 640, 480, 0 } }, 15, true } }, }; TEST_CASE("Pipeline wait_for_frames", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (pipeline_default_configurations.end() == pipeline_default_configurations.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(pipeline_default_configurations.at(PID).streams.size() > 0); REQUIRE_NOTHROW(pipe.start(cfg)); std::vector> frames; std::vector> timestamps; for (auto i = 0; i < 30; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(10000)); auto actual_fps = pipeline_default_configurations.at(PID).fps; while (frames.size() < 100) { frameset frame; REQUIRE_NOTHROW(frame = pipe.wait_for_frames(10000)); std::vector frames_set; std::vector ts; for (auto f : frame) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } frames_set.push_back(f.get_profile()); ts.push_back(f.get_timestamp()); } frames.push_back(frames_set); timestamps.push_back(ts); } REQUIRE_NOTHROW(pipe.stop()); validate(frames, timestamps, pipeline_default_configurations.at(PID), actual_fps); } } } TEST_CASE("Pipeline poll_for_frames", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (pipeline_default_configurations.end() == pipeline_default_configurations.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(pipeline_default_configurations.at(PID).streams.size() > 0); REQUIRE_NOTHROW(pipe.start(cfg)); std::vector> frames; std::vector> timestamps; for (auto i = 0; i < 30; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); auto actual_fps = pipeline_default_configurations.at(PID).fps; while (frames.size() < 100) { frameset frame; if (pipe.poll_for_frames(&frame)) { std::vector frames_set; std::vector ts; for (auto f : frame) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } frames_set.push_back(f.get_profile()); ts.push_back(f.get_timestamp()); } frames.push_back(frames_set); timestamps.push_back(ts); } } REQUIRE_NOTHROW(pipe.stop()); validate(frames, timestamps, pipeline_default_configurations.at(PID), actual_fps); } } } static const std::map pipeline_custom_configurations = { /* RS400/PSR*/ { {"0AD1", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS410/ASR*/ { {"0AD2", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* D410/USB2*/ { {"0AD2", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 480, 270, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 480, 270, 0 } }, 30, true } }, /* RS415/ASRC*/ { {"0AD3", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true } }, /* D415/USB2*/ { {"0AD3", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 480, 270, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 424, 240, 0 } }, 30, true } }, /* RS430/AWG*/ { {"0AD4", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } }, 30, true } }, /* RS430_MM/AWGT*/ { {"0AD5", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS420/PWG*/ { {"0AF6", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS420_MM/PWGT*/ { {"0AFE", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS410_MM/ASRT*/ { {"0AFF", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS400_MM/PSR*/ { {"0B00", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS430_MC/AWGTC*/ { {"0B01", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true } }, /* RS405/DS5U*/ { {"0B03", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS435_RGB/AWGC*/ { {"0B07", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1280, 720, 0 } }, 30, true } }, /* D435/USB2*/ { {"0B07", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 480, 270, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 424, 240, 0 } }, 30, true } }, }; TEST_CASE("Pipeline enable stream", "[live]") { auto dev_requests = pipeline_custom_configurations; rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (dev_requests.end() == dev_requests.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(dev_requests[PID].streams.size() > 0); for (auto req : pipeline_custom_configurations.at(PID).streams) REQUIRE_NOTHROW(cfg.enable_stream(req.stream, req.index, req.width, req.height, req.format, dev_requests[PID].fps)); REQUIRE_NOTHROW(profile = pipe.start(cfg)); REQUIRE(profile); REQUIRE(std::string(profile.get_device().get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) == dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); std::vector> frames; std::vector> timestamps; for (auto i = 0; i < 30; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); auto actual_fps = dev_requests[PID].fps; while (frames.size() < 100) { frameset frame; REQUIRE_NOTHROW(frame = pipe.wait_for_frames(5000)); std::vector frames_set; std::vector ts; for (auto f : frame) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } frames_set.push_back(f.get_profile()); ts.push_back(f.get_timestamp()); } frames.push_back(frames_set); timestamps.push_back(ts); } REQUIRE_NOTHROW(pipe.stop()); validate(frames, timestamps, dev_requests[PID], actual_fps); } } } static const std::map pipeline_autocomplete_configurations = { /* RS400/PSR*/ { {"0AD1", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_ANY, 0, 0, 1 } }, 30, true } }, /* RS410/ASR*/ { {"0AD2", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_ANY, 0, 0, 1 } }, 30, true } }, /* D410/USB2*/ { {"0AD2", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 0, 0, 0 } }, 15, true } }, // FW issues render streaming Depth:HD + Color:FHD as not feasible. Applies for AWGC and ASRC /* AWGC/ASRC should be invoked with 30 fps in order to avoid selecting FullHD for Color sensor at least with FW 5.9.6*/ /* RS415/ASRC*/ { {"0AD3", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 }/*,{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 0, 0, 0 }*/ }, 30, true } }, /* D415/USB2*/ { {"0AD3", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 0, 0, 0 } }, 60, true } }, /* RS430/AWG*/ { {"0AD4", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 } }, 30, true } }, /* RS430_MM/AWGT*/ { {"0AD5", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_ANY, 0, 0, 1 } }, 30, true } }, /* RS420/PWG*/ { {"0AF6", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 } }, 30, true } }, /* RS420_MM/PWGT*/ { {"0AFE", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 0, 0, 0 } }, 30, true } }, /* RS410_MM/ASRT*/ { {"0AFF", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 0, 0, 0 } }, 30, true } }, /* RS400_MM/PSR*/ { {"0B00", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 0, 0, 0 } }, 30, true } }, /* RS430_MM_RGB/AWGTC*/{ {"0B01", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 0, 0, 0 } }, 30, true } }, /* RS405/DS5U*/ { {"0B03", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },{ RS2_STREAM_INFRARED, RS2_FORMAT_ANY, 0, 0, 1 } }, 30, true } }, /* RS435_RGB/AWGC*/ { {"0B07", true },{ { /*{ RS2_STREAM_DEPTH, RS2_FORMAT_ANY, 0, 0, 0 },*/{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 0, 0, 0 } }, 30, true } }, /* D435/USB2*/ { {"0B07", false },{ { /*{ RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 0, 0, 0 },*/{ RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 0, 0, 0 } }, 60, true } }, }; TEST_CASE("Pipeline enable stream auto complete", "[live]") { auto & configurations = pipeline_autocomplete_configurations; rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (configurations.end() == configurations.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(configurations[PID].streams.size() > 0); for (auto & req : configurations[PID].streams) REQUIRE_NOTHROW(cfg.enable_stream(req.stream, req.index, req.width, req.height, req.format, configurations[PID].fps)); REQUIRE_NOTHROW(profile = pipe.start(cfg)); REQUIRE(profile); REQUIRE(profile.get_device()); REQUIRE(std::string(profile.get_device().get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) == dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); std::vector> frames; std::vector> timestamps; for (auto i = 0; i < 30; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); auto actual_fps = configurations[PID].fps; while (frames.size() < 100) { frameset frame; REQUIRE_NOTHROW(frame = pipe.wait_for_frames(5000)); std::vector frames_set; std::vector ts; for (auto f : frame) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } frames_set.push_back(f.get_profile()); ts.push_back(f.get_timestamp()); } frames.push_back(frames_set); timestamps.push_back(ts); } REQUIRE_NOTHROW(pipe.stop()); validate(frames, timestamps, configurations[PID], actual_fps); } } } TEST_CASE("Pipeline disable_all", "[live]") { auto not_default_configurations = pipeline_custom_configurations; auto default_configurations = pipeline_default_configurations; rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if ((not_default_configurations.end() == not_default_configurations.find(PID)) || ((default_configurations.find(PID) == default_configurations.end()))) { WARN("Skipping test - the Device-Under-Test profile is not defined properly for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(not_default_configurations[PID].streams.size() > 0); for (auto req : not_default_configurations[PID].streams) REQUIRE_NOTHROW(cfg.enable_stream(req.stream, req.index, req.width, req.height, req.format, not_default_configurations[PID].fps)); REQUIRE_NOTHROW(cfg.disable_all_streams()); REQUIRE_NOTHROW(profile = pipe.start(cfg)); REQUIRE(profile); REQUIRE(std::string(profile.get_device().get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) == dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); std::vector> frames; std::vector> timestamps; for (auto i = 0; i < 30; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); auto actual_fps = default_configurations[PID].fps; while (frames.size() < 100) { frameset frame; REQUIRE_NOTHROW(frame = pipe.wait_for_frames(5000)); std::vector frames_set; std::vector ts; for (auto f : frame) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } frames_set.push_back(f.get_profile()); ts.push_back(f.get_timestamp()); } frames.push_back(frames_set); timestamps.push_back(ts); } REQUIRE_NOTHROW(pipe.stop()); validate(frames, timestamps, default_configurations[PID], actual_fps); } } } TEST_CASE("Pipeline disable stream", "[live]") { auto configurations = pipeline_custom_configurations; rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (configurations.end() == configurations.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(configurations[PID].streams.size() > 0); for (auto req : configurations[PID].streams) REQUIRE_NOTHROW(cfg.enable_stream(req.stream, req.index, req.width, req.height, req.format, configurations[PID].fps)); auto stream_to_be_removed = configurations[PID].streams[configurations[PID].streams.size() - 1].stream; REQUIRE_NOTHROW(cfg.disable_stream(stream_to_be_removed)); auto& streams = configurations[PID].streams; streams.erase(streams.end() - 1); REQUIRE_NOTHROW(profile = pipe.start(cfg)); REQUIRE(profile); REQUIRE(std::string(profile.get_device().get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)) == dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); std::vector> frames; std::vector> timestamps; for (auto i = 0; i < 30; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); auto actual_fps = configurations[PID].fps; while (frames.size() < 100) { frameset frame; REQUIRE_NOTHROW(frame = pipe.wait_for_frames(5000)); std::vector frames_set; std::vector ts; for (auto f : frame) { if (f.supports_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)) { auto val = static_cast(f.get_frame_metadata(RS2_FRAME_METADATA_ACTUAL_FPS)); if (val < actual_fps) actual_fps = val; } frames_set.push_back(f.get_profile()); ts.push_back(f.get_timestamp()); } frames.push_back(frames_set); timestamps.push_back(ts); } REQUIRE_NOTHROW(pipe.stop()); validate(frames, timestamps, configurations[PID], actual_fps); } } } // The test relies on default profiles that may alter TEST_CASE("Pipeline with specific device", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; REQUIRE_NOTHROW(dev = list[0]); disable_sensitive_options_for(dev); std::string serial, serial1, serial2; REQUIRE_NOTHROW(serial = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); rs2::pipeline pipe(ctx); rs2::config cfg; REQUIRE_NOTHROW(cfg.enable_device(serial)); rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); REQUIRE_NOTHROW(serial1 = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); CAPTURE(serial); CAPTURE(serial1); REQUIRE(serial1 == serial); REQUIRE_NOTHROW(profile = pipe.start(cfg)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE_NOTHROW(serial2 = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); CAPTURE(serial); CAPTURE(serial2); REQUIRE(serial2 == serial); REQUIRE_NOTHROW(pipe.stop()); } } bool operator==(std::vector streams1, std::vector streams2) { if (streams1.size() != streams2.size()) return false; std::sort(streams1.begin(), streams1.end()); std::sort(streams2.begin(), streams2.end()); auto equals = true; for (auto i = 0; i < streams1.size(); i++) { if (streams1[i] != streams2[i]) { equals = false; break; } } return equals; } TEST_CASE("Pipeline start stop", "[live]") { auto configurations = pipeline_custom_configurations; rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile pipe_profile; REQUIRE_NOTHROW(pipe_profile = cfg.resolve(pipe)); REQUIRE(pipe_profile); REQUIRE_NOTHROW(dev = pipe_profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (configurations.end() == configurations.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(configurations[PID].streams.size() > 0); for (auto req : configurations[PID].streams) REQUIRE_NOTHROW(cfg.enable_stream(req.stream, req.index, req.width, req.height, req.format, configurations[PID].fps)); auto& streams = configurations[PID].streams; REQUIRE_NOTHROW(pipe.start(cfg)); std::vector frames; for (auto i = 0; i < 10; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); REQUIRE_NOTHROW(pipe.stop()); REQUIRE_NOTHROW(pipe.start(cfg)); for (auto i = 0; i < 20; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(5000)); std::vector profiles; auto equals = 0; for (auto i = 0; i < 30; i++) { frameset frame; REQUIRE_NOTHROW(frame = pipe.wait_for_frames(5000)); REQUIRE(frame.size() > 0); for (auto f : frame) { auto profile = f.get_profile(); auto video_profile = profile.as(); profiles.push_back({ profile.stream_type(), profile.format(), video_profile.width(), video_profile.height(), video_profile.stream_index() }); } if (profiles == streams) equals++; profiles.clear(); } REQUIRE_NOTHROW(pipe.stop()); REQUIRE(equals > 1); } } } bool compare(const rs2_extrinsics& first, const rs2_extrinsics& second, double delta = 0) { for (auto i = 0; i < 9; i++) { if (std::abs(first.rotation[i] - second.rotation[i]) > delta) { return false; } } for (auto i = 0; i < 3; i++) { if (std::abs(first.translation[i] - second.translation[i]) > delta) { return false; } } return true; } static const std::map pipeline_configurations_for_extrinsic = { /* D400/PSR*/ { {"0AD1", true},{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* D410/ASR*/ { {"0AD2", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* D410/USB2*/ { {"0AD2", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 480, 270, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 480, 270, 0 } }, 30, true } }, /* D415/ASRC*/ { {"0AD3", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } , { RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1920, 1080, 0 } }, 30, true } }, /* D415/USB2*/ { {"0AD3", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 480, 270, 0 }, { RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 424, 240, 0 } }, 30, true } }, /* RS430/AWG*/ { {"0AD4", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } }, 30, true } }, /* RS430_MM/AWGT*/ { {"0AD5", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } }, 30, true } }, /* RS420/PWG*/ { {"0AF6", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } }, 30, true } }, /* RS420_MM/PWGT*/ { {"0AFE", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } }, 30, true } }, /* RS410_MM/ASRT*/ { {"0AFF", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS400_MM/PSR*/ { {"0B00", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS430_MM_RGB/AWGTC*/{ {"0B01", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } , { RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1920, 1080, 0 } }, 30, true } }, /* RS405/DS5U*/ { {"0B03", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_RGB8, 640, 480, 0 } }, 30, true } }, /* RS435_RGB/AWGC*/ { {"0B07", true },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 640, 480, 0 }, { RS2_STREAM_INFRARED, RS2_FORMAT_Y8, 640, 480, 1 } , { RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 1920, 1080, 0 } }, 30, true } }, /* D435/USB2*/ { {"0B07", false },{ { { RS2_STREAM_DEPTH, RS2_FORMAT_Z16, 480, 270, 0 }, { RS2_STREAM_COLOR, RS2_FORMAT_RGB8, 424, 240, 0 } }, 30, true } }, }; TEST_CASE("Pipeline get selection", "[live]") { rs2::context ctx; auto & configurations = pipeline_configurations_for_extrinsic; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile pipe_profile; REQUIRE_NOTHROW(pipe_profile = cfg.resolve(pipe)); REQUIRE(pipe_profile); REQUIRE_NOTHROW(dev = pipe_profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); dev_type PID = get_PID(dev); CAPTURE(PID.first); CAPTURE(PID.second); if (configurations.end() == configurations.find(PID)) { WARN("Skipping test - the Device-Under-Test profile is not defined for PID " << PID.first << (PID.second ? " USB3" : " USB2")); } else { REQUIRE(configurations[PID].streams.size() > 0); for (auto & req : configurations[PID].streams) REQUIRE_NOTHROW(cfg.enable_stream(req.stream, req.index, req.width, req.height, req.format, configurations[PID].fps)); REQUIRE_NOTHROW(pipe.start(cfg)); std::vector profiles; REQUIRE_NOTHROW(pipe_profile = pipe.get_active_profile()); REQUIRE(pipe_profile); REQUIRE_NOTHROW(profiles = pipe_profile.get_streams()); auto & streams = configurations[PID].streams; std::vector pipe_streams; for (auto s : profiles) { REQUIRE(s.is()); auto video = s.as(); pipe_streams.push_back({ video.stream_type(), video.format(), video.width(), video.height(), video.stream_index() }); } REQUIRE(pipe_streams.size() == streams.size()); std::sort(pipe_streams.begin(), pipe_streams.end()); std::sort(streams.begin(), streams.end()); for (auto i = 0; i < pipe_streams.size(); i++) { REQUIRE(pipe_streams[i] == streams[i]); } } } } TEST_CASE("Per-frame metadata sanity check", "[live][!mayfail]") { //Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); const int frames_before_start_measure = 10; const int frames_for_fps_measure = 50; const double msec_to_sec = 0.001; const int num_of_profiles_for_each_subdevice = 2; const float max_diff_between_real_and_metadata_fps = 1.0f; for (auto && subdevice : list) { std::vector modes; REQUIRE_NOTHROW(modes = subdevice.get_stream_profiles()); REQUIRE(modes.size() > 0); CAPTURE(subdevice.get_info(RS2_CAMERA_INFO_NAME)); //the test will be done only on sub set of profile for each sub device for (int i = 0; i < modes.size(); i += static_cast(std::ceil((float)modes.size() / (float)num_of_profiles_for_each_subdevice))) { // Full-HD is often times too heavy for the build machine to handle if (auto video_profile = modes[i].as()) { if (video_profile.width() == 1920 && video_profile.height() == 1080 && video_profile.fps() == 60) { continue; // Disabling for now } } // GPIO Requires external triggers to produce events if (RS2_STREAM_GPIO == modes[i].stream_type()) continue; // Disabling for now CAPTURE(modes[i].format()); CAPTURE(modes[i].fps()); CAPTURE(modes[i].stream_type()); CAPTURE(modes[i].stream_index()); if (auto video = modes[i].as()) { CAPTURE(video.width()); CAPTURE(video.height()); } std::vector frames_additional_data; auto frames = 0; double start; std::condition_variable cv; std::mutex m; auto first = true; REQUIRE_NOTHROW(subdevice.open({ modes[i] })); disable_sensitive_options_for(subdevice); REQUIRE_NOTHROW(subdevice.start([&](rs2::frame f) { if ((frames >= frames_before_start_measure) && (frames_additional_data.size() < frames_for_fps_measure)) { if (first) { start = internal::get_time(); } first = false; internal_frame_additional_data data{ f.get_timestamp(), f.get_frame_number(), f.get_frame_timestamp_domain(), f.get_profile().stream_type(), f.get_profile().format() }; // Store frame metadata attributes, verify API behavior correctness for (auto i = 0; i < rs2_frame_metadata_value::RS2_FRAME_METADATA_COUNT; i++) { CAPTURE(i); bool supported = false; REQUIRE_NOTHROW(supported = f.supports_frame_metadata((rs2_frame_metadata_value)i)); if (supported) { rs2_metadata_type val{}; REQUIRE_NOTHROW(val = f.get_frame_metadata((rs2_frame_metadata_value)i)); data.frame_md.md_attributes[i] = std::make_pair(true, val); } else { REQUIRE_THROWS(f.get_frame_metadata((rs2_frame_metadata_value)i)); data.frame_md.md_attributes[i].first = false; } } std::unique_lock lock(m); frames_additional_data.push_back(data); } frames++; if (frames_additional_data.size() >= frames_for_fps_measure) { cv.notify_one(); } })); CAPTURE(frames_additional_data.size()); CAPTURE(frames_for_fps_measure); std::unique_lock lock(m); cv.wait_for(lock, std::chrono::seconds(15), [&] {return ((frames_additional_data.size() >= frames_for_fps_measure)); }); REQUIRE_NOTHROW(subdevice.stop()); REQUIRE_NOTHROW(subdevice.close()); auto end = internal::get_time(); lock.unlock(); auto seconds = (end - start)*msec_to_sec; CAPTURE(start); CAPTURE(end); CAPTURE(seconds); REQUIRE(seconds > 0); if (frames_additional_data.size()) { auto actual_fps = (double)frames_additional_data.size() / (double)seconds; double metadata_seconds = frames_additional_data[frames_additional_data.size() - 1].timestamp - frames_additional_data[0].timestamp; metadata_seconds *= msec_to_sec; if (metadata_seconds <= 0) { std::cout << "Start metadata " << std::fixed << frames_additional_data[0].timestamp << "\n"; std::cout << "End metadata " << std::fixed << frames_additional_data[frames_additional_data.size() - 1].timestamp << "\n"; } REQUIRE(metadata_seconds > 0); auto metadata_frames = frames_additional_data[frames_additional_data.size() - 1].frame_number - frames_additional_data[0].frame_number; auto metadata_fps = (double)metadata_frames / (double)metadata_seconds; for (auto i = 0; i < frames_additional_data.size() - 1; i++) { CAPTURE(i); CAPTURE(frames_additional_data[i].timestamp_domain); CAPTURE(frames_additional_data[i + 1].timestamp_domain); REQUIRE((frames_additional_data[i].timestamp_domain == frames_additional_data[i + 1].timestamp_domain)); CAPTURE(frames_additional_data[i].frame_number); CAPTURE(frames_additional_data[i + 1].frame_number); REQUIRE((frames_additional_data[i].frame_number < frames_additional_data[i + 1].frame_number)); } CAPTURE(metadata_frames); CAPTURE(metadata_seconds); CAPTURE(metadata_fps); CAPTURE(frames_additional_data.size()); CAPTURE(actual_fps); //it the diff in percentage between metadata fps and actual fps is bigger than max_diff_between_real_and_metadata_fps //the test will fail REQUIRE(std::fabs(metadata_fps / actual_fps - 1) < max_diff_between_real_and_metadata_fps); // Verify per-frame metadata attributes metadata_verification(frames_additional_data); } } } } } // the tests may incorrectly interpret changes to librealsense-core, namely default profiles selections TEST_CASE("All suggested profiles can be opened", "[live][!mayfail]") { //Require at least one device to be plugged in rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { const int num_of_profiles_for_each_subdevice = 2; std::vector list; REQUIRE_NOTHROW(list = ctx.query_all_sensors()); REQUIRE(list.size() > 0); for (auto && subdevice : list) { disable_sensitive_options_for(subdevice); std::vector modes; REQUIRE_NOTHROW(modes = subdevice.get_stream_profiles()); REQUIRE(modes.size() > 0); //the test will be done only on sub set of profile for each sub device for (int i = 0; i < modes.size(); i += (int)std::ceil((float)modes.size() / (float)num_of_profiles_for_each_subdevice)) { //CAPTURE(rs2_subdevice(subdevice)); CAPTURE(modes[i].format()); CAPTURE(modes[i].fps()); CAPTURE(modes[i].stream_type()); REQUIRE_NOTHROW(subdevice.open({ modes[i] })); REQUIRE_NOTHROW(subdevice.start([](rs2::frame fref) {})); REQUIRE_NOTHROW(subdevice.stop()); REQUIRE_NOTHROW(subdevice.close()); } } } } TEST_CASE("Pipeline config enable resolve start flow", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); REQUIRE(list.size()); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); disable_sensitive_options_for(dev); REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); REQUIRE_NOTHROW(cfg.enable_stream(RS2_STREAM_DEPTH, -1, 0, 0, RS2_FORMAT_Z16, 0)); REQUIRE_NOTHROW(pipe.start(cfg)); REQUIRE_NOTHROW(profile = pipe.get_active_profile()); auto depth_profile = profile.get_stream(RS2_STREAM_DEPTH).as(); CAPTURE(depth_profile.stream_index()); CAPTURE(depth_profile.stream_type()); CAPTURE(depth_profile.format()); CAPTURE(depth_profile.fps()); CAPTURE(depth_profile.width()); CAPTURE(depth_profile.height()); std::vector frames; uint32_t timeout = is_usb3(dev) ? 500 : 2000; // for USB2 it takes longer to produce frames for (auto i = 0; i < 5; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(timeout)); REQUIRE_NOTHROW(pipe.stop()); REQUIRE_NOTHROW(pipe.start(cfg)); for (auto i = 0; i < 5; i++) REQUIRE_NOTHROW(pipe.wait_for_frames(timeout)); REQUIRE_NOTHROW(cfg.disable_all_streams()); REQUIRE_NOTHROW(cfg.enable_stream(RS2_STREAM_DEPTH, -1, 0, 0, RS2_FORMAT_ANY, 0)); REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); REQUIRE_NOTHROW(cfg.disable_all_streams()); REQUIRE_NOTHROW(profile = cfg.resolve(pipe)); REQUIRE(profile); REQUIRE_NOTHROW(dev = profile.get_device()); REQUIRE(dev); } } TEST_CASE("Pipeline - multicam scenario with specific devices", "[live][multicam]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { auto list = ctx.query_devices(); int realsense_devices_count = 0; rs2::device d; for (auto&& dev : list) { if (dev.supports(RS2_CAMERA_INFO_NAME)) { std::string name = dev.get_info(RS2_CAMERA_INFO_NAME); if (name != "Platform Camera") { realsense_devices_count++; d = dev; } } } if (realsense_devices_count < 2) { WARN("Skipping test! This test requires multiple RealSense devices connected"); return; } disable_sensitive_options_for(d); //After getting the device, find a serial and a profile it can use std::string required_serial; REQUIRE_NOTHROW(required_serial = d.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); rs2::stream_profile required_profile; //find the a video profile of some sensor for (auto&& sensor : d.query_sensors()) { for (auto&& profile : sensor.get_stream_profiles()) { auto vid_profile = profile.as(); if (vid_profile) { required_profile = vid_profile; break; } } if (required_profile) break; } REQUIRE(required_profile); CAPTURE(required_profile); auto vid_profile = required_profile.as(); rs2::device dev; rs2::pipeline pipe(ctx); rs2::config cfg; //Using the config object to request the serial and stream that we found above REQUIRE_NOTHROW(cfg.enable_device(required_serial)); REQUIRE_NOTHROW(cfg.enable_stream(vid_profile.stream_type(), vid_profile.stream_index(), vid_profile.width(), vid_profile.height(), vid_profile.format(), vid_profile.fps())); //Testing that config.resolve() returns the right data rs2::pipeline_profile resolved_profile; REQUIRE_NOTHROW(resolved_profile = cfg.resolve(pipe)); REQUIRE(resolved_profile); rs2::pipeline_profile resolved_profile_from_start; REQUIRE_NOTHROW(resolved_profile_from_start = pipe.start(cfg)); REQUIRE(resolved_profile_from_start); REQUIRE_NOTHROW(dev = resolved_profile.get_device()); REQUIRE(dev); rs2::device dev_from_start; REQUIRE_NOTHROW(dev_from_start = resolved_profile_from_start.get_device()); REQUIRE(dev_from_start); //Compare serial number std::string actual_serial; std::string actual_serial_from_start; REQUIRE_NOTHROW(actual_serial = dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); REQUIRE_NOTHROW(actual_serial_from_start = dev_from_start.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); REQUIRE(actual_serial == required_serial); REQUIRE(actual_serial == actual_serial_from_start); //Compare Stream std::vector actual_streams; REQUIRE_NOTHROW(actual_streams = resolved_profile.get_streams()); REQUIRE(actual_streams.size() == 1); REQUIRE(actual_streams[0] == required_profile); std::vector actual_streams_from_start; REQUIRE_NOTHROW(actual_streams_from_start = resolved_profile_from_start.get_streams()); REQUIRE(actual_streams_from_start.size() == 1); REQUIRE(actual_streams_from_start[0] == required_profile); pipe.stop(); //Using the config object to request the serial and stream that we found above, and test the pipeline.start() returns the right data rs2::device started_dev; rs2::pipeline_profile strarted_profile; cfg = rs2::config(); //Clean previous config //Using the config object to request the serial and stream that we found above REQUIRE_NOTHROW(cfg.enable_device(required_serial)); REQUIRE_NOTHROW(cfg.enable_stream(vid_profile.stream_type(), vid_profile.stream_index(), vid_profile.width(), vid_profile.height(), vid_profile.format(), vid_profile.fps())); //Testing that pipeline.start(cfg) returns the right data REQUIRE_NOTHROW(strarted_profile = pipe.start(cfg)); REQUIRE(strarted_profile); REQUIRE_NOTHROW(started_dev = strarted_profile.get_device()); REQUIRE(started_dev); //Compare serial number std::string started_serial; REQUIRE_NOTHROW(started_serial = started_dev.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); REQUIRE(started_serial == required_serial); //Compare Stream std::vector started_streams; REQUIRE_NOTHROW(started_streams = strarted_profile.get_streams()); REQUIRE(started_streams.size() == 1); REQUIRE(started_streams[0] == required_profile); pipe.stop(); } } TEST_CASE("Empty Pipeline Profile", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { REQUIRE_NOTHROW(rs2::pipeline_profile p); rs2::pipeline_profile prof; REQUIRE_FALSE(prof); rs2::device dev; CHECK_THROWS(dev = prof.get_device()); REQUIRE(!dev); for (int i = 0; i < (int)RS2_STREAM_COUNT; i++) { rs2_stream stream = static_cast(i); CAPTURE(stream); rs2::stream_profile sp; CHECK_THROWS(sp = prof.get_stream(stream)); REQUIRE(!sp); } std::vector spv; CHECK_THROWS(spv = prof.get_streams()); REQUIRE(spv.size() == 0); } } void require_pipeline_profile_same(const rs2::pipeline_profile& profile1, const rs2::pipeline_profile& profile2) { rs2::device d1 = profile1.get_device(); rs2::device d2 = profile2.get_device(); REQUIRE(d1.get().get()); REQUIRE(d2.get().get()); std::string serial1, serial2; REQUIRE_NOTHROW(serial1 = d1.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); REQUIRE_NOTHROW(serial2 = d2.get_info(RS2_CAMERA_INFO_SERIAL_NUMBER)); if (serial1 != serial2) { throw std::runtime_error(serial1 + " is different than " + serial2); } std::string name1, name2; REQUIRE_NOTHROW(name1 = d1.get_info(RS2_CAMERA_INFO_NAME)); REQUIRE_NOTHROW(name2 = d2.get_info(RS2_CAMERA_INFO_NAME)); if (name1 != name2) { throw std::runtime_error(name1 + " is different than " + name2); } auto streams1 = profile1.get_streams(); auto streams2 = profile2.get_streams(); if (streams1.size() != streams2.size()) { throw std::runtime_error(std::string("Profiles contain different number of streams ") + std::to_string(streams1.size()) + " vs " + std::to_string(streams2.size())); } auto streams1_and_2_equals = true; for (auto&& s : streams1) { auto it = std::find_if(streams2.begin(), streams2.end(), [&s](const rs2::stream_profile& sp) { return s.format() == sp.format() && s.fps() == sp.fps() && s.is_default() == sp.is_default() && s.stream_index() == sp.stream_index() && s.stream_type() == sp.stream_type() && s.stream_name() == sp.stream_name(); }); if (it == streams2.end()) { streams1_and_2_equals = false; } } if (!streams1_and_2_equals) { throw std::runtime_error(std::string("Profiles contain different streams")); } } TEST_CASE("Pipeline empty Config", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { REQUIRE_NOTHROW(rs2::config c); //Empty config rs2::pipeline p(ctx); rs2::config c1; REQUIRE(c1.get().get() != nullptr); bool can_resolve = false; REQUIRE_NOTHROW(can_resolve = c1.can_resolve(p)); REQUIRE(true == can_resolve); REQUIRE_THROWS(c1.resolve(nullptr)); rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = c1.resolve(p)); REQUIRE(true == profile); } } TEST_CASE("Pipeline 2 Configs", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { rs2::pipeline p(ctx); REQUIRE_NOTHROW(rs2::config c1); REQUIRE_NOTHROW(rs2::config c2); rs2::config c1; rs2::config c2; bool can_resolve1 = false; bool can_resolve2 = false; REQUIRE_NOTHROW(can_resolve1 = c1.can_resolve(p)); REQUIRE_NOTHROW(can_resolve2 = c2.can_resolve(p)); REQUIRE(can_resolve1); REQUIRE(can_resolve2); rs2::pipeline_profile profile1; rs2::pipeline_profile profile2; REQUIRE_NOTHROW(profile1 = c1.resolve(p)); REQUIRE(profile1); REQUIRE_NOTHROW(profile2 = c2.resolve(p)); REQUIRE(profile2); REQUIRE_NOTHROW(require_pipeline_profile_same(profile1, profile2)); } } TEST_CASE("Pipeline start after resolve uses the same profile", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { rs2::pipeline pipe(ctx); rs2::config cfg; cfg.enable_stream(RS2_STREAM_DEPTH); rs2::pipeline_profile profile_from_cfg; REQUIRE_NOTHROW(profile_from_cfg = cfg.resolve(pipe)); REQUIRE(profile_from_cfg); rs2::pipeline_profile profile_from_start; REQUIRE_NOTHROW(profile_from_start = pipe.start(cfg)); REQUIRE(profile_from_start); REQUIRE_NOTHROW(require_pipeline_profile_same(profile_from_cfg, profile_from_start)); } } TEST_CASE("Pipeline start ignores previous config if it was changed", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { rs2::pipeline pipe(ctx); rs2::config cfg; rs2::pipeline_profile profile_from_cfg; REQUIRE_NOTHROW(profile_from_cfg = cfg.resolve(pipe)); REQUIRE(profile_from_cfg); cfg.enable_stream(RS2_STREAM_INFRARED, RS2_FORMAT_ANY, 60); //enable a single stream (unlikely to be the default one) rs2::pipeline_profile profile_from_start; REQUIRE_NOTHROW(profile_from_start = pipe.start(cfg)); REQUIRE(profile_from_start); REQUIRE_THROWS(require_pipeline_profile_same(profile_from_cfg, profile_from_start)); } } TEST_CASE("Pipeline Config disable all is a nop with empty config", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { rs2::pipeline p(ctx); rs2::config c1; c1.disable_all_streams(); rs2::config c2; rs2::pipeline_profile profile1; rs2::pipeline_profile profile2; REQUIRE_NOTHROW(profile1 = c1.resolve(p)); REQUIRE(profile1); REQUIRE_NOTHROW(profile2 = c2.resolve(p)); REQUIRE(profile2); REQUIRE_NOTHROW(require_pipeline_profile_same(profile1, profile2)); } } TEST_CASE("Pipeline Config disable each stream is nop on empty config", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { rs2::pipeline p(ctx); rs2::config c1; for (int i = 0; i < (int)RS2_STREAM_COUNT; i++) { REQUIRE_NOTHROW(c1.disable_stream(static_cast(i))); } rs2::config c2; rs2::pipeline_profile profile1; rs2::pipeline_profile profile2; REQUIRE_NOTHROW(profile1 = c1.resolve(p)); REQUIRE(profile1); REQUIRE_NOTHROW(profile2 = c2.resolve(p)); REQUIRE(profile2); REQUIRE_NOTHROW(require_pipeline_profile_same(profile1, profile2)); } } TEST_CASE("Pipeline record and playback", "[live]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { const std::string filename = get_folder_path(special_folder::temp_folder) + "test_file.bag"; //Scoping the below code to make sure no one holds the device { rs2::pipeline p(ctx); rs2::config cfg; REQUIRE_NOTHROW(cfg.enable_record_to_file(filename)); rs2::pipeline_profile profile; REQUIRE_NOTHROW(profile = cfg.resolve(p)); REQUIRE(profile); auto dev = profile.get_device(); REQUIRE(dev); disable_sensitive_options_for(dev); REQUIRE_NOTHROW(p.start(cfg)); std::this_thread::sleep_for(std::chrono::seconds(5)); rs2::frameset frames; REQUIRE_NOTHROW(frames = p.wait_for_frames(200)); REQUIRE(frames); REQUIRE(frames.size() > 0); REQUIRE_NOTHROW(p.stop()); } //Scoping the above code to make sure no one holds the device REQUIRE(file_exists(filename)); { rs2::pipeline p(ctx); rs2::config cfg; rs2::pipeline_profile profile; REQUIRE_NOTHROW(cfg.enable_device_from_file(filename)); REQUIRE_NOTHROW(profile = cfg.resolve(p)); REQUIRE(profile); REQUIRE_NOTHROW(p.start(cfg)); std::this_thread::sleep_for(std::chrono::seconds(5)); rs2::frameset frames; REQUIRE_NOTHROW(frames = p.wait_for_frames(200)); REQUIRE(frames); REQUIRE_NOTHROW(p.stop()); } } } TEST_CASE("Syncer sanity with software-device device", "[live][software-device]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { const int W = 640; const int H = 480; const int BPP = 2; std::shared_ptr dev = std::move(std::make_shared()); auto s = dev->add_sensor("software_sensor"); rs2_intrinsics intrinsics{ W, H, 0, 0, 0, 0, RS2_DISTORTION_NONE ,{ 0,0,0,0,0 } }; s.add_video_stream({ RS2_STREAM_DEPTH, 0, 0, W, H, 60, BPP, RS2_FORMAT_Z16, intrinsics }); s.add_video_stream({ RS2_STREAM_INFRARED, 1, 1, W, H,60, BPP, RS2_FORMAT_Y8, intrinsics }); dev->create_matcher(RS2_MATCHER_DI); frame_queue q; auto profiles = s.get_stream_profiles(); auto depth = profiles[0]; auto ir = profiles[1]; syncer sync; s.open(profiles); s.start(sync); std::vector pixels(W * H * BPP, 0); std::weak_ptr weak_dev(dev); std::thread t([&s, weak_dev, pixels, depth, ir]() mutable { auto shared_dev = weak_dev.lock(); if (shared_dev == nullptr) return; s.on_video_frame({ pixels.data(), [](void*) {}, 0,0,0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 7, depth }); s.on_video_frame({ pixels.data(), [](void*) {}, 0,0,0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 5, ir }); s.on_video_frame({ pixels.data(), [](void*) {},0,0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 8, depth }); s.on_video_frame({ pixels.data(), [](void*) {},0,0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 6, ir }); s.on_video_frame({ pixels.data(), [](void*) {},0,0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 8, ir }); }); t.detach(); std::vector>> expected = { { { RS2_STREAM_DEPTH , 7}}, { { RS2_STREAM_INFRARED , 5 } }, { { RS2_STREAM_INFRARED , 6 } }, { { RS2_STREAM_DEPTH , 8 },{ RS2_STREAM_INFRARED , 8 } } }; std::vector>> results; for (auto i = 0; i < expected.size(); i++) { frameset fs; REQUIRE_NOTHROW(fs = sync.wait_for_frames(5000)); std::vector < std::pair> curr; for (auto f : fs) { curr.push_back({ f.get_profile().stream_type(), f.get_frame_number() }); } results.push_back(curr); } CAPTURE(results.size()); CAPTURE(expected.size()); REQUIRE(results.size() == expected.size()); for (auto i = 0; i < expected.size(); i++) { auto exp = expected[i]; auto curr = results[i]; CAPTURE(i); CAPTURE(exp.size()); CAPTURE(curr.size()); REQUIRE(exp.size() == curr.size()); for (auto j = 0; j < exp.size(); j++) { CAPTURE(j); CAPTURE(exp[j].first); CAPTURE(exp[j].second); CAPTURE(curr[j].first); CAPTURE(curr[j].second); REQUIRE(std::find(curr.begin(), curr.end(), exp[j]) != curr.end()); } } } } TEST_CASE("Syncer clean_inactive_streams by frame number with software-device device", "[live][software-device]") { rs2::context ctx; if (make_context(SECTION_FROM_TEST_NAME, &ctx)) { log_to_file(RS2_LOG_SEVERITY_DEBUG); const int W = 640; const int H = 480; const int BPP = 2; std::shared_ptr dev = std::make_shared(); auto s = dev->add_sensor("software_sensor"); rs2_intrinsics intrinsics{ W, H, 0, 0, 0, 0, RS2_DISTORTION_NONE ,{ 0,0,0,0,0 } }; s.add_video_stream({ RS2_STREAM_DEPTH, 0, 0, W, H, 60, BPP, RS2_FORMAT_Z16, intrinsics }); s.add_video_stream({ RS2_STREAM_INFRARED, 1, 1, W, H,60, BPP, RS2_FORMAT_Y8, intrinsics }); dev->create_matcher(RS2_MATCHER_DI); frame_queue q; auto profiles = s.get_stream_profiles(); auto depth = profiles[0]; auto ir = profiles[1]; syncer sync(10); s.open(profiles); s.start(sync); std::vector pixels(W * H * BPP, 0); std::weak_ptr weak_dev(dev); std::thread t([s, weak_dev, pixels, depth, ir]() mutable { auto shared_dev = weak_dev.lock(); if (shared_dev == nullptr) return; s.on_video_frame({ pixels.data(), [](void*) {}, 0,0,0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 1, depth }); s.on_video_frame({ pixels.data(), [](void*) {}, 0,0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 1, ir }); s.on_video_frame({ pixels.data(), [](void*) {}, 0,0,0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 3, depth }); s.on_video_frame({ pixels.data(), [](void*) {}, 0,0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 4, depth }); s.on_video_frame({ pixels.data(), [](void*) {},0,0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 5, depth }); s.on_video_frame({ pixels.data(), [](void*) {}, 0,0,0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 6, depth }); s.on_video_frame({ pixels.data(), [](void*) {}, 0, 0, 0, RS2_TIMESTAMP_DOMAIN_HARDWARE_CLOCK, 7, depth }); }); t.detach(); std::vector>> expected = { { { RS2_STREAM_DEPTH , 1 } }, { { RS2_STREAM_INFRARED , 1 } }, { { RS2_STREAM_DEPTH , 3 } }, { { RS2_STREAM_DEPTH , 4 } }, { { RS2_STREAM_DEPTH , 5 } }, { { RS2_STREAM_DEPTH , 6 } }, { { RS2_STREAM_DEPTH , 7 } }, }; std::vector>> results; for (auto i = 0; i < expected.size(); i++) { frameset fs; CAPTURE(i); REQUIRE_NOTHROW(fs = sync.wait_for_frames(5000)); std::vector < std::pair> curr; for (auto f : fs) { curr.push_back({ f.get_profile().stream_type(), f.get_frame_number() }); } results.push_back(curr); } CAPTURE(results.size()); CAPTURE(expected.size()); REQUIRE(results.size() == expected.size()); for (auto i = 0; i < expected.size(); i++) { auto exp = expected[i]; auto curr = results[i]; CAPTURE(i); CAPTURE(exp.size()); CAPTURE(curr.size()); REQUIRE(exp.size() == exp.size()); for (auto j = 0; j < exp.size(); j++) { CAPTURE(j); CAPTURE(exp[j].first); CAPTURE(exp[j].second); CAPTURE(curr[j].first); CAPTURE(curr[j].second); REQUIRE(std::find(curr.begin(), curr.end(), exp[j]) != curr.end()); } } } } void dev_changed(rs2_device_list* removed_devs, rs2_device_list* added_devs, void* ptr) {} TEST_CASE("C API Compilation", "[live]") { rs2_error* e; REQUIRE_NOTHROW(rs2_set_devices_changed_callback(NULL, dev_changed, NULL, &e)); REQUIRE(e != nullptr); }