import base64 from flask import Flask, request, jsonify from flask_cors import CORS from Algorithms.TargetFollower import TargetFollower from Interfaces.DataProcessor import DataProcessor import numpy as np import cv2 app = Flask(__name__) CORS(app) data_processor = DataProcessor() def decode_image_from_base64(image_base64: str, color: bool = True) -> np.ndarray: image_data = base64.b64decode(image_base64) np_arr = np.frombuffer(image_data, np.uint8) image = cv2.imdecode(np_arr, cv2.IMREAD_COLOR if color else cv2.IMREAD_GRAYSCALE) return image @app.route('/follow-vector', methods=['POST']) def follow_vector(): try: data = request.json # data['rgb'] = decode_image_from_base64(data['rgb'], color=True) # data['depth'] = decode_image_from_base64(data['depth'], color=False) detections_info, annotated_image = data_processor.inline_detection(data) if not detections_info and annotated_image is None: return jsonify({'error': 'No detections found.'}), 400 # Указываем параметры камеры image_height, image_width, _ = annotated_image.shape camera_position = np.array([image_width / 2, image_height, 0]) # todo: add detections_info to the kafka topic # Инициализируем TargetFollower и рассчитываем target вектор follower = TargetFollower(detections_info, annotated_image, camera_position=camera_position) selected_target = follower.select_target('person', nearest=True) follow_vector = follower.calculate_follow_vector() return jsonify({ 'detections_info': detections_info, 'follow_vector': follow_vector.tolist() }) except Exception as e: print(e) return jsonify({'error': str(e)}), 500 if __name__ == '__main__': app.run(host="0.0.0.0", port=5000, debug=True)