## License: Apache 2.0. See LICENSE file in root directory. ## Copyright(c) 2021 Intel Corporation. All Rights Reserved. ##################################################### ## auto calibration ## ##################################################### import argparse import json import sys import time import pyrealsense2 as rs __desc__ = """ This script demonstrates usage of Self-Calibration (UCAL) APIs """ # mappings occ_speed_map = { 'very_fast': 0, 'fast': 1, 'medium': 2, 'slow': 3, 'wall': 4, } tare_accuracy_map = { 'very_high': 0, 'high': 1, 'medium': 2, 'low': 3, } scan_map = { 'intrinsic': 0, 'extrinsic': 1, } fl_adjust_map = { 'right_only': 0, 'both_sides': 1 } ctx = rs.context() def main(arguments=None): args = parse_arguments(arguments) try: device = ctx.query_devices()[0] except IndexError: print('Device is not connected') sys.exit(1) # Verify Preconditions: # 1. The script is applicable for D400-series devices only cam_name = device.get_info(rs.camera_info.name) if device.supports(rs.camera_info.name) else "Unrecognized camera" if device.supports(rs.camera_info.product_line): device_product_line = str(device.get_info(rs.camera_info.product_line)) if device_product_line != 'D400': print(f'The example is intended for RealSense D400 Depth cameras, and is not', end =" ") print(f'applicable with {cam_name}') sys.exit(1) # 2. The routine assumes USB3 connection type # In case of USB2 connection, the streaming profiles should be readjusted if device.supports(rs.camera_info.usb_type_descriptor): usb_type = device.get_info(rs.camera_info.usb_type_descriptor) if not usb_type.startswith('3.'): print('The script is designed to run with USB3 connection type.') print('In order to enable it with USB2.1 mode the fps rates for the Focal Length and Ground Truth calculation stages should be re-adjusted') sys.exit(1) # prepare device depth_sensor = device.first_depth_sensor() depth_sensor.set_option(rs.option.emitter_enabled, 0) if depth_sensor.supports(rs.option.thermal_compensation): depth_sensor.set_option(rs.option.thermal_compensation, 0) if args.exposure == 'auto': depth_sensor.set_option(rs.option.enable_auto_exposure, 1) else: depth_sensor.set_option(rs.option.enable_auto_exposure, 0) depth_sensor.set_option(rs.option.exposure, int(args.exposure)) print("Starting UCAL...") try: # The recomended sequence of procedures: On-Chip -> Focal Length -> Tare Calibration run_on_chip_calibration(args.onchip_speed, args.onchip_scan) run_focal_length_calibration((args.target_width, args.target_height), args.focal_adjustment) run_tare_calibration(args.tare_accuracy, args.tare_scan, args.tare_gt, (args.target_width, args.target_height)) finally: if depth_sensor.supports(rs.option.thermal_compensation): depth_sensor.set_option(rs.option.thermal_compensation, 1) print("UCAL finished successfully") def progress_callback(progress): print(f'\rProgress {progress}% ... ', end ="\r") def run_on_chip_calibration(speed, scan): data = { 'calib type': 0, 'speed': occ_speed_map[speed], 'scan parameter': scan_map[scan], 'white_wall_mode': 1 if speed == 'wall' else 0, } args = json.dumps(data) cfg = rs.config() cfg.enable_stream(rs.stream.depth, 256, 144, rs.format.z16, 90) pipe = rs.pipeline(ctx) pp = pipe.start(cfg) dev = pp.get_device() try: print('Starting On-Chip calibration...') print(f'\tSpeed:\t{speed}') print(f'\tScan:\t{scan}') adev = dev.as_auto_calibrated_device() table, health = adev.run_on_chip_calibration(args, progress_callback, 30000) print('On-Chip calibration finished') print(f'\tHealth: {health}') adev.set_calibration_table(table) adev.write_calibration() finally: pipe.stop() def run_focal_length_calibration(target_size, adjust_side): number_of_images = 25 timeout_s = 30 cfg = rs.config() cfg.enable_stream(rs.stream.infrared, 1, 1280, 720, rs.format.y8, 30) cfg.enable_stream(rs.stream.infrared, 2, 1280, 720, rs.format.y8, 30) lq = rs.frame_queue(capacity=number_of_images, keep_frames=True) rq = rs.frame_queue(capacity=number_of_images, keep_frames=True) counter = 0 flags = [False, False] def cb(frame): nonlocal counter, flags if counter > number_of_images: return for f in frame.as_frameset(): p = f.get_profile() if p.stream_index() == 1: lq.enqueue(f) flags[0] = True if p.stream_index() == 2: rq.enqueue(f) flags[1] = True if all(flags): counter += 1 flags = [False, False] pipe = rs.pipeline(ctx) pp = pipe.start(cfg, cb) dev = pp.get_device() try: print('Starting Focal-Length calibration...') print(f'\tTarget Size:\t{target_size}') print(f'\tSide Adjustment:\t{adjust_side}') stime = time.time() while counter < number_of_images: time.sleep(0.5) if timeout_s < (time.time() - stime): raise RuntimeError(f"Failed to capture {number_of_images} frames in {timeout_s} seconds, got only {counter} frames") adev = dev.as_auto_calibrated_device() table, ratio, angle = adev.run_focal_length_calibration(lq, rq, target_size[0], target_size[1], fl_adjust_map[adjust_side],progress_callback) print('Focal-Length calibration finished') print(f'\tRatio:\t{ratio}') print(f'\tAngle:\t{angle}') adev.set_calibration_table(table) adev.write_calibration() finally: pipe.stop() def run_tare_calibration(accuracy, scan, gt, target_size): data = {'scan parameter': scan_map[scan], 'accuracy': tare_accuracy_map[accuracy], } args = json.dumps(data) print('Starting Tare calibration...') if gt == 'auto': target_z = calculate_target_z(target_size) else: target_z = float(gt) cfg = rs.config() cfg.enable_stream(rs.stream.depth, 256, 144, rs.format.z16, 90) pipe = rs.pipeline(ctx) pp = pipe.start(cfg) dev = pp.get_device() try: print(f'\tGround Truth:\t{target_z}') print(f'\tAccuracy:\t{accuracy}') print(f'\tScan:\t{scan}') adev = dev.as_auto_calibrated_device() table = adev.run_tare_calibration(target_z, args, progress_callback, 30000) print('Tare calibration finished') adev.set_calibration_table(table) adev.write_calibration() finally: pipe.stop() def calculate_target_z(target_size): number_of_images = 50 # The required number of frames is 10+ timeout_s = 30 cfg = rs.config() cfg.enable_stream(rs.stream.infrared, 1, 1280, 720, rs.format.y8, 30) q = rs.frame_queue(capacity=number_of_images, keep_frames=True) # Frame queues q2, q3 should be left empty. Provision for future enhancements. q2 = rs.frame_queue(capacity=number_of_images, keep_frames=True) q3 = rs.frame_queue(capacity=number_of_images, keep_frames=True) counter = 0 def cb(frame): nonlocal counter if counter > number_of_images: return for f in frame.as_frameset(): q.enqueue(f) counter += 1 pipe = rs.pipeline(ctx) pp = pipe.start(cfg, cb) dev = pp.get_device() try: stime = time.time() while counter < number_of_images: time.sleep(0.5) if timeout_s < (time.time() - stime): raise RuntimeError(f"Failed to capture {number_of_images} frames in {timeout_s} seconds, got only {counter} frames") adev = dev.as_auto_calibrated_device() print('Calculating distance to target...') print(f'\tTarget Size:\t{target_size}') target_z = adev.calculate_target_z(q, q2, q3, target_size[0], target_size[1]) print(f'Calculated distance to target is {target_z}') finally: pipe.stop() return target_z def parse_arguments(args): parser = argparse.ArgumentParser(description=__desc__) parser.add_argument('--exposure', default='auto', help="Exposure value or 'auto' to use auto exposure") parser.add_argument('--target-width', default=175, type=int, help='The target width') parser.add_argument('--target-height', default=100, type=int, help='The target height') parser.add_argument('--onchip-speed', default='medium', choices=occ_speed_map.keys(), help='On-Chip speed') parser.add_argument('--onchip-scan', choices=scan_map.keys(), default='intrinsic', help='On-Chip scan') parser.add_argument('--focal-adjustment', choices=fl_adjust_map.keys(), default='right_only', help='Focal-Length adjustment') parser.add_argument('--tare-gt', default='auto', help="Target ground truth, set 'auto' to calculate using target size" "or the distance to target in mm to use a custom value") parser.add_argument('--tare-accuracy', choices=tare_accuracy_map.keys(), default='medium', help='Tare accuracy') parser.add_argument('--tare-scan', choices=scan_map.keys(), default='intrinsic', help='Tare scan') return parser.parse_args(args) if __name__ == '__main__': main()