import pyrealsense2 as rs import numpy as np import cv2 import tensorflow as tf # Configure depth and color streams pipeline = rs.pipeline() config = rs.config() config.enable_stream(rs.stream.color, 1280, 720, rs.format.bgr8, 30) print("[INFO] Starting streaming...") pipeline.start(config) print("[INFO] Camera ready.") # download model from: https://github.com/opencv/opencv/wiki/TensorFlow-Object-Detection-API#run-network-in-opencv print("[INFO] Loading model...") PATH_TO_CKPT = "frozen_inference_graph.pb" # Load the Tensorflow model into memory. detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.compat.v1.GraphDef() with tf.compat.v1.gfile.GFile(PATH_TO_CKPT, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.compat.v1.import_graph_def(od_graph_def, name='') sess = tf.compat.v1.Session(graph=detection_graph) # Input tensor is the image image_tensor = detection_graph.get_tensor_by_name('image_tensor:0') # Output tensors are the detection boxes, scores, and classes # Each box represents a part of the image where a particular object was detected detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represents level of confidence for each of the objects. # The score is shown on the result image, together with the class label. detection_scores = detection_graph.get_tensor_by_name('detection_scores:0') detection_classes = detection_graph.get_tensor_by_name('detection_classes:0') # Number of objects detected num_detections = detection_graph.get_tensor_by_name('num_detections:0') # code source of tensorflow model loading: https://www.geeksforgeeks.org/ml-training-image-classifier-using-tensorflow-object-detection-api/ print("[INFO] Model loaded.") colors_hash = {} while True: frames = pipeline.wait_for_frames() color_frame = frames.get_color_frame() # Convert images to numpy arrays color_image = np.asanyarray(color_frame.get_data()) scaled_size = (color_frame.width, color_frame.height) # expand image dimensions to have shape: [1, None, None, 3] # i.e. a single-column array, where each item in the column has the pixel RGB value image_expanded = np.expand_dims(color_image, axis=0) # Perform the actual detection by running the model with the image as input (boxes, scores, classes, num) = sess.run([detection_boxes, detection_scores, detection_classes, num_detections], feed_dict={image_tensor: image_expanded}) boxes = np.squeeze(boxes) classes = np.squeeze(classes).astype(np.int32) scores = np.squeeze(scores) for idx in range(int(num)): class_ = classes[idx] score = scores[idx] box = boxes[idx] if class_ not in colors_hash: colors_hash[class_] = tuple(np.random.choice(range(256), size=3)) if score > 0.6: left = int(box[1] * color_frame.width) top = int(box[0] * color_frame.height) right = int(box[3] * color_frame.width) bottom = int(box[2] * color_frame.height) p1 = (left, top) p2 = (right, bottom) # draw box r, g, b = colors_hash[class_] cv2.rectangle(color_image, p1, p2, (int(r), int(g), int(b)), 2, 1) cv2.namedWindow('RealSense', cv2.WINDOW_AUTOSIZE) cv2.imshow('RealSense', color_image) cv2.waitKey(1) print("[INFO] stop streaming ...") pipeline.stop()