You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Artem-Darius Weber bb2dc1e41e
feat: Определение местоположения объектов относительно RealSense и их разметка
2 months ago
..
res feat: Определение местоположения объектов относительно RealSense и их разметка 2 months ago
CMakeLists.txt feat: Определение местоположения объектов относительно RealSense и их разметка 2 months ago
readme.md feat: Определение местоположения объектов относительно RealSense и их разметка 2 months ago
rs-dnn.cpp feat: Определение местоположения объектов относительно RealSense и их разметка 2 months ago

readme.md

rs-dnn Sample

Overview

This example shows how to use Intel RealSense cameras with existing Deep Neural Network algorithms. The demo is derived from MobileNet Single-Shot Detector example provided with opencv. We modify it to work with Intel RealSense cameras and take advantage of depth data (in a very basic way).

The demo will load existing Caffe model (see another tutorial here) and use it to classify objects within the RGB image. Once object is detected, the demo will calculate approximate distance to the object using the depth data:

Implementation Details

Unlike the other samples, this demo requires access to the exact depth values. We generate a matrix of floating point values (in meters) using the following helper function:

auto depth_mat = depth_frame_to_meters(pipe, depth_frame);