|
|
|
from swarms import Agent, OpenAIChat, SequentialWorkflow
|
|
|
|
|
|
|
|
# Example usage
|
|
|
|
llm = OpenAIChat(
|
|
|
|
temperature=0.5,
|
|
|
|
max_tokens=3000,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Initialize the Agent with the language agent
|
|
|
|
agent1 = Agent(
|
|
|
|
agent_name="John the writer",
|
|
|
|
llm=llm,
|
|
|
|
max_loops=1,
|
|
|
|
dashboard=False,
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
|
|
# Create another Agent for a different task
|
|
|
|
agent2 = Agent("Summarizer", llm=llm, max_loops=1, dashboard=False)
|
|
|
|
|
|
|
|
|
|
|
|
# Create the workflow
|
|
|
|
workflow = SequentialWorkflow(
|
|
|
|
name="Blog Generation Workflow",
|
|
|
|
description=(
|
|
|
|
"Generate a youtube transcript on how to deploy agents into"
|
|
|
|
" production"
|
|
|
|
),
|
|
|
|
max_loops=1,
|
|
|
|
autosave=True,
|
|
|
|
dashboard=False,
|
|
|
|
agents=[agent1, agent2],
|
|
|
|
)
|
|
|
|
|
|
|
|
# Run the workflow
|
|
|
|
workflow.run()
|
|
|
|
|
|
|
|
# # # Output the results
|
|
|
|
# for task in workflow.tasks:
|
|
|
|
# print(f"Task: {task.description}, Result: {task.result}")
|