You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/token_cache_and_adaptive_fa...

59 lines
2.1 KiB

3 months ago
import os
import json
from datetime import datetime, timedelta
from collections import defaultdict
class TokenCache:
def __init__(self, cache_duration_minutes=30):
self.token_cache = defaultdict(lambda: {"token": None, "expires": datetime.now()})
self.cache_duration = timedelta(minutes=cache_duration_minutes)
def get_token(self, agent_name):
cached_token = self.token_cache[agent_name]
if cached_token["token"] and cached_token["expires"] > datetime.now():
print(f"Using cached token for {agent_name}.")
return cached_token["token"]
return None # Token has expired or does not exist
def set_token(self, agent_name, token):
self.token_cache[agent_name] = {
"token": token,
"expires": datetime.now() + self.cache_duration,
}
class AdaptiveAgentFactory:
def __init__(self, model, token_cache, reflection_steps=2):
self.model = model
self.token_cache = token_cache
self.reflection_steps = reflection_steps
def create_agent(self, agent_name, system_prompt, task, memory):
cached_token = self.token_cache.get_token(agent_name)
if cached_token:
return cached_token
# Create new agent instance with unique parameters
new_agent = Agent(
agent_name=agent_name,
system_prompt=system_prompt,
agent_description=f"Adaptive agent for {task}",
llm=self.model,
max_loops=3,
autosave=True,
dashboard=False,
verbose=True,
dynamic_temperature_enabled=True,
saved_state_path=f"{agent_name.lower().replace(' ', '_')}.json",
user_name="adaptive_user",
retry_attempts=2,
context_length=200000,
long_term_memory=memory,
)
# Generate a token for the new agent and cache it
token = f"{agent_name}_{datetime.now().strftime('%Y%m%d%H%M%S')}"
self.token_cache.set_token(agent_name, token)
print(f"Created new agent {agent_name} with token {token}.")
return new_agent