You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
59 lines
2.1 KiB
59 lines
2.1 KiB
3 months ago
|
|
||
|
import os
|
||
|
import json
|
||
|
from datetime import datetime, timedelta
|
||
|
from collections import defaultdict
|
||
|
|
||
|
class TokenCache:
|
||
|
def __init__(self, cache_duration_minutes=30):
|
||
|
self.token_cache = defaultdict(lambda: {"token": None, "expires": datetime.now()})
|
||
|
self.cache_duration = timedelta(minutes=cache_duration_minutes)
|
||
|
|
||
|
def get_token(self, agent_name):
|
||
|
cached_token = self.token_cache[agent_name]
|
||
|
if cached_token["token"] and cached_token["expires"] > datetime.now():
|
||
|
print(f"Using cached token for {agent_name}.")
|
||
|
return cached_token["token"]
|
||
|
return None # Token has expired or does not exist
|
||
|
|
||
|
def set_token(self, agent_name, token):
|
||
|
self.token_cache[agent_name] = {
|
||
|
"token": token,
|
||
|
"expires": datetime.now() + self.cache_duration,
|
||
|
}
|
||
|
|
||
|
class AdaptiveAgentFactory:
|
||
|
def __init__(self, model, token_cache, reflection_steps=2):
|
||
|
self.model = model
|
||
|
self.token_cache = token_cache
|
||
|
self.reflection_steps = reflection_steps
|
||
|
|
||
|
def create_agent(self, agent_name, system_prompt, task, memory):
|
||
|
cached_token = self.token_cache.get_token(agent_name)
|
||
|
if cached_token:
|
||
|
return cached_token
|
||
|
|
||
|
# Create new agent instance with unique parameters
|
||
|
new_agent = Agent(
|
||
|
agent_name=agent_name,
|
||
|
system_prompt=system_prompt,
|
||
|
agent_description=f"Adaptive agent for {task}",
|
||
|
llm=self.model,
|
||
|
max_loops=3,
|
||
|
autosave=True,
|
||
|
dashboard=False,
|
||
|
verbose=True,
|
||
|
dynamic_temperature_enabled=True,
|
||
|
saved_state_path=f"{agent_name.lower().replace(' ', '_')}.json",
|
||
|
user_name="adaptive_user",
|
||
|
retry_attempts=2,
|
||
|
context_length=200000,
|
||
|
long_term_memory=memory,
|
||
|
)
|
||
|
|
||
|
# Generate a token for the new agent and cache it
|
||
|
token = f"{agent_name}_{datetime.now().strftime('%Y%m%d%H%M%S')}"
|
||
|
self.token_cache.set_token(agent_name, token)
|
||
|
print(f"Created new agent {agent_name} with token {token}.")
|
||
|
return new_agent
|