You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/README.md

1310 lines
37 KiB

![Swarming banner icon](images/swarmslogobanner.png)
<div align="center">
11 months ago
Orchestrate swarms of agents for production-grade applications.
[![GitHub issues](https://img.shields.io/github/issues/kyegomez/swarms)](https://github.com/kyegomez/swarms/issues) [![GitHub forks](https://img.shields.io/github/forks/kyegomez/swarms)](https://github.com/kyegomez/swarms/network) [![GitHub stars](https://img.shields.io/github/stars/kyegomez/swarms)](https://github.com/kyegomez/swarms/stargazers) [![GitHub license](https://img.shields.io/github/license/kyegomez/swarms)](https://github.com/kyegomez/swarms/blob/main/LICENSE)[![GitHub star chart](https://img.shields.io/github/stars/kyegomez/swarms?style=social)](https://star-history.com/#kyegomez/swarms)[![Dependency Status](https://img.shields.io/librariesio/github/kyegomez/swarms)](https://libraries.io/github/kyegomez/swarms) [![Downloads](https://static.pepy.tech/badge/swarms/month)](https://pepy.tech/project/swarms)
[![Join the Agora discord](https://img.shields.io/discord/1110910277110743103?label=Discord&logo=discord&logoColor=white&style=plastic&color=d7b023)![Share on Twitter](https://img.shields.io/twitter/url/https/twitter.com/cloudposse.svg?style=social&label=Share%20%40kyegomez/swarms)](https://twitter.com/intent/tweet?text=Check%20out%20this%20amazing%20AI%20project:%20&url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms) [![Share on Facebook](https://img.shields.io/badge/Share-%20facebook-blue)](https://www.facebook.com/sharer/sharer.php?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms) [![Share on LinkedIn](https://img.shields.io/badge/Share-%20linkedin-blue)](https://www.linkedin.com/shareArticle?mini=true&url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=&summary=&source=)
2 years ago
[![Share on Reddit](https://img.shields.io/badge/-Share%20on%20Reddit-orange)](https://www.reddit.com/submit?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&title=Swarms%20-%20the%20future%20of%20AI) [![Share on Hacker News](https://img.shields.io/badge/-Share%20on%20Hacker%20News-orange)](https://news.ycombinator.com/submitlink?u=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&t=Swarms%20-%20the%20future%20of%20AI) [![Share on Pinterest](https://img.shields.io/badge/-Share%20on%20Pinterest-red)](https://pinterest.com/pin/create/button/?url=https%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms&media=https%3A%2F%2Fexample.com%2Fimage.jpg&description=Swarms%20-%20the%20future%20of%20AI) [![Share on WhatsApp](https://img.shields.io/badge/-Share%20on%20WhatsApp-green)](https://api.whatsapp.com/send?text=Check%20out%20Swarms%20-%20the%20future%20of%20AI%20%23swarms%20%23AI%0A%0Ahttps%3A%2F%2Fgithub.com%2Fkyegomez%2Fswarms)
</div>
10 months ago
Individual agents are barely being deployd into production because of 5 suffocating challanges: short memory, single task threading, hallucinations, high cost, and lack of collaboration. With Multi-agent collaboration, you can effectively eliminate all of these issues. Swarms provides you with simple, reliable, and agile primitives to build your own Swarm for your specific use case. Now, Swarms is being used in production by RBC, John Deere, and many AI startups. To learn more about the unparalled benefits about multi-agent collaboration check out this github repository for research papers or book a call with me!
----
2 years ago
11 months ago
## Install
1 year ago
`pip3 install -U swarms`
2 years ago
---
## Usage
10 months ago
1 year ago
Run example in Collab: <a target="_blank" href="https://colab.research.google.com/github/kyegomez/swarms/blob/master/playground/swarms_example.ipynb">
<img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
1 year ago
</a>
1 year ago
### `Agent`
12 months ago
A fully plug-and-play autonomous agent powered by an LLM extended by a long-term memory database, and equipped with function calling for tool usage! By passing in an LLM, you can create a fully autonomous agent with extreme customization and reliability, ready for real-world task automation!
1 year ago
1 year ago
Features:
1 year ago
1 year ago
✅ Any LLM / Any framework
1 year ago
1 year ago
✅ Extremely customize-able with max loops, autosaving, import docs (PDFS, TXT, CSVs, etc), tool usage, etc etc
1 year ago
1 year ago
✅ Long term memory database with RAG (ChromaDB, Pinecone, Qdrant)
```python
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
11 months ago
from swarms import Agent, OpenAIChat
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
11 months ago
temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
)
## Initialize the workflow
agent = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
# Run the workflow on a task
agent.run("Generate a 10,000 word blog on health and wellness.")
```
### `ToolAgent`
10 months ago
ToolAgent is an agent that can use tools through JSON function calling. It intakes any open source model from huggingface and is extremely modular and plug in and play. We need help adding general support to all models soon.
```python
10 months ago
from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
11 months ago
from swarms import ToolAgent
10 months ago
from swarms.utils.json_utils import base_model_to_json
# Load the pre-trained model and tokenizer
10 months ago
model = AutoModelForCausalLM.from_pretrained(
"databricks/dolly-v2-12b",
load_in_4bit=True,
device_map="auto",
)
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
10 months ago
# Initialize the schema for the person's information
class Schema(BaseModel):
name: str = Field(..., title="Name of the person")
agent: int = Field(..., title="Age of the person")
is_student: bool = Field(
..., title="Whether the person is a student"
)
courses: list[str] = Field(
..., title="List of courses the person is taking"
)
# Convert the schema to a JSON string
tool_schema = base_model_to_json(Schema)
# Define the task to generate a person's information
10 months ago
task = (
"Generate a person's information based on the following schema:"
)
# Create an instance of the ToolAgent class
10 months ago
agent = ToolAgent(
name="dolly-function-agent",
description="Ana gent to create a child data",
model=model,
tokenizer=tokenizer,
json_schema=tool_schema,
)
# Run the agent to generate the person's information
generated_data = agent.run(task)
# Print the generated data
10 months ago
print(f"Generated data: {generated_data}")
1 year ago
```
### `Worker`
12 months ago
The `Worker` is a simple all-in-one agent equipped with an LLM, tools, and RAG for low level tasks.
1 year ago
✅ Plug in and Play LLM. Utilize any LLM from anywhere and any framework
✅ Reliable RAG: Utilizes FAISS for efficient RAG but it's modular so you can use any DB.
✅ Multi-Step Parallel Function Calling: Use any tool
```python
# Importing necessary modules
import os
11 months ago
1 year ago
from dotenv import load_dotenv
11 months ago
from swarms import OpenAIChat, Worker, tool
1 year ago
# Loading environment variables from .env file
load_dotenv()
# Retrieving the OpenAI API key from environment variables
api_key = os.getenv("OPENAI_API_KEY")
# Create a tool
@tool
def search_api(query: str):
pass
# Creating a Worker instance
worker = Worker(
name="My Worker",
role="Worker",
human_in_the_loop=False,
tools=[search_api],
temperature=0.5,
llm=OpenAIChat(openai_api_key=api_key),
)
# Running the worker with a prompt
11 months ago
out = worker.run("Hello, how are you? Create an image of how your are doing!")
1 year ago
# Printing the output
print(out)
```
------
# `Agent` with Long Term Memory
`Agent` equipped with quasi-infinite long term memory. Great for long document understanding, analysis, and retrieval.
```python
from swarms import Agent, ChromaDB, OpenAIChat
# Making an instance of the ChromaDB class
memory = ChromaDB(
metric="cosine",
n_results=3,
output_dir="results",
docs_folder="docs",
)
# Initializing the agent with the Gemini instance and other parameters
agent = Agent(
agent_name="Covid-19-Chat",
agent_description=(
"This agent provides information about COVID-19 symptoms."
),
llm=OpenAIChat(),
max_loops="auto",
autosave=True,
verbose=True,
long_term_memory=memory,
stopping_condition="finish",
)
# Defining the task and image path
task = ("What are the symptoms of COVID-19?",)
# Running the agent with the specified task and image
out = agent.run(task)
print(out)
```
10 months ago
# `Agent` with Long Term Memory ++ Tools!
An LLM equipped with long term memory and tools, a full stack agent capable of automating all and any digital tasks given a good prompt.
```python
from swarms import Agent, ChromaDB, OpenAIChat, tool
# Making an instance of the ChromaDB class
memory = ChromaDB(
metric="cosine",
n_results=3,
output_dir="results",
docs_folder="docs",
)
# Initialize a tool
@tool
def search_api(query: str):
# Add your logic here
return query
# Initializing the agent with the Gemini instance and other parameters
agent = Agent(
agent_name="Covid-19-Chat",
agent_description=(
"This agent provides information about COVID-19 symptoms."
),
llm=OpenAIChat(),
max_loops="auto",
autosave=True,
verbose=True,
long_term_memory=memory,
stopping_condition="finish",
tools=[search_api],
)
# Defining the task and image path
task = ("What are the symptoms of COVID-19?",)
# Running the agent with the specified task and image
out = agent.run(task)
print(out)
```
----
### `SequentialWorkflow`
1 year ago
Sequential Workflow enables you to sequentially execute tasks with `Agent` and then pass the output into the next agent and onwards until you have specified your max loops. `SequentialWorkflow` is wonderful for real-world business tasks like sending emails, summarizing documents, and analyzing data.
✅ Save and Restore Workflow states!
1 year ago
1 year ago
✅ Multi-Modal Support for Visual Chaining
1 year ago
1 year ago
✅ Utilizes Agent class
```python
11 months ago
import os
1 year ago
from dotenv import load_dotenv
11 months ago
from swarms import Agent, OpenAIChat, SequentialWorkflow
1 year ago
load_dotenv()
1 year ago
# Load the environment variables
api_key = os.getenv("OPENAI_API_KEY")
# Initialize the language agent
llm = OpenAIChat(
11 months ago
temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
)
# Initialize the agent with the language agent
1 year ago
agent1 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
1 year ago
agent2 = Agent(llm=llm, max_loops=1)
# Create another agent for a different task
1 year ago
agent3 = Agent(llm=llm, max_loops=1)
# Create the workflow
workflow = SequentialWorkflow(max_loops=1)
# Add tasks to the workflow
1 year ago
workflow.add(
11 months ago
agent1,
"Generate a 10,000 word blog on health and wellness.",
1 year ago
)
# Suppose the next task takes the output of the first task as input
1 year ago
workflow.add(
11 months ago
agent2,
"Summarize the generated blog",
1 year ago
)
# Run the workflow
workflow.run()
# Output the results
for task in workflow.tasks:
print(f"Task: {task.description}, Result: {task.result}")
```
### `ConcurrentWorkflow`
1 year ago
`ConcurrentWorkflow` runs all the tasks all at the same time with the inputs you give it!
```python
import os
11 months ago
from dotenv import load_dotenv
11 months ago
from swarms import Agent, ConcurrentWorkflow, OpenAIChat, Task
# Load environment variables from .env file
load_dotenv()
# Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
1 year ago
agent = Agent(llm=llm, max_loops=1)
# Create a workflow
workflow = ConcurrentWorkflow(max_workers=5)
# Create tasks
1 year ago
task1 = Task(agent, "What's the weather in miami")
task2 = Task(agent, "What's the weather in new york")
task3 = Task(agent, "What's the weather in london")
# Add tasks to the workflow
workflow.add(tasks=[task1, task2, task3])
# Run the workflow
workflow.run()
```
1 year ago
### `RecursiveWorkflow`
1 year ago
`RecursiveWorkflow` will keep executing the tasks until a specific token like <DONE> is located inside the text!
1 year ago
```python
11 months ago
import os
from dotenv import load_dotenv
from swarms import Agent, OpenAIChat, RecursiveWorkflow, Task
1 year ago
# Load environment variables from .env file
load_dotenv()
# Load environment variables
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
agent = Agent(llm=llm, max_loops=1)
# Create a workflow
workflow = RecursiveWorkflow(stop_token="<DONE>")
# Create tasks
task1 = Task(agent, "What's the weather in miami")
task2 = Task(agent, "What's the weather in new york")
task3 = Task(agent, "What's the weather in london")
# Add tasks to the workflow
workflow.add(task1)
workflow.add(task2)
workflow.add(task3)
# Run the workflow
workflow.run()
```
1 year ago
### `ModelParallelizer`
1 year ago
The ModelParallelizer allows you to run multiple models concurrently, comparing their outputs. This feature enables you to easily compare the performance and results of different models, helping you make informed decisions about which model to use for your specific task.
1 year ago
1 year ago
Plug-and-Play Integration: The structure provides a seamless integration with various models, including OpenAIChat, Anthropic, Mixtral, and Gemini. You can easily plug in any of these models and start using them without the need for extensive modifications or setup.
1 year ago
```python
1 year ago
import os
1 year ago
1 year ago
from dotenv import load_dotenv
1 year ago
11 months ago
from swarms import Anthropic, Gemini, Mixtral, ModelParallelizer, OpenAIChat
1 year ago
load_dotenv()
# API Keys
anthropic_api_key = os.getenv("ANTHROPIC_API_KEY")
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Initialize the models
llm = OpenAIChat(openai_api_key=openai_api_key)
anthropic = Anthropic(anthropic_api_key=anthropic_api_key)
mixtral = Mixtral()
gemini = Gemini(gemini_api_key=gemini_api_key)
# Initialize the parallelizer
llms = [llm, anthropic, mixtral, gemini]
parallelizer = ModelParallelizer(llms)
# Set the task
task = "Generate a 10,000 word blog on health and wellness."
# Run the task
out = parallelizer.run(task)
# Print the responses 1 by 1
for i in range(len(out)):
print(f"Response from LLM {i}: {out[i]}")
```
### Simple Conversational Agent
1 year ago
A Plug in and play conversational agent with `GPT4`, `Mixytral`, or any of our models
1 year ago
- Reliable conversational structure to hold messages together with dynamic handling for long context conversations and interactions with auto chunking
- Reliable, this simple system will always provide responses you want.
```python
from swarms import Agent, Anthropic
1 year ago
## Initialize the workflow
agent = Agent(
agent_name="Transcript Generator",
agent_description=(
"Generate a transcript for a youtube video on what swarms"
" are!"
),
llm=Anthropic(),
max_loops=3,
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
interactive=True, # Set to True
1 year ago
)
1 year ago
# Run the workflow on a task
agent("Generate a transcript for a youtube video on what swarms are!")
10 months ago
```
## Devin
Implementation of Devil in less than 90 lines of code with several tools:
terminal, browser, and edit files!
```python
from swarms import Agent, Anthropic, tool
import subprocess
# Model
llm = Anthropic(
temperature=0.1,
)
# Tools
@tool
def terminal(
code: str,
):
"""
Run code in the terminal.
Args:
code (str): The code to run in the terminal.
Returns:
str: The output of the code.
"""
out = subprocess.run(
code, shell=True, capture_output=True, text=True
).stdout
return str(out)
@tool
def browser(query: str):
"""
Search the query in the browser with the `browser` tool.
Args:
query (str): The query to search in the browser.
Returns:
str: The search results.
"""
import webbrowser
url = f"https://www.google.com/search?q={query}"
webbrowser.open(url)
return f"Searching for {query} in the browser."
@tool
def create_file(file_path: str, content: str):
"""
Create a file using the file editor tool.
10 months ago
Args:
file_path (str): The path to the file.
content (str): The content to write to the file.
Returns:
str: The result of the file creation operation.
"""
with open(file_path, "w") as file:
file.write(content)
return f"File {file_path} created successfully."
@tool
def file_editor(file_path: str, mode: str, content: str):
"""
Edit a file using the file editor tool.
Args:
file_path (str): The path to the file.
mode (str): The mode to open the file in.
content (str): The content to write to the file.
Returns:
str: The result of the file editing operation.
"""
with open(file_path, mode) as file:
file.write(content)
return f"File {file_path} edited successfully."
# Agent
agent = Agent(
agent_name="Devin",
system_prompt=(
"Autonomous agent that can interact with humans and other"
" agents. Be Helpful and Kind. Use the tools provided to"
" assist the user. Return all code in markdown format."
),
llm=llm,
max_loops="auto",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
interactive=True,
tools=[terminal, browser, file_editor, create_file],
code_interpreter=True,
# streaming=True,
)
# Run the agent
out = agent("Create a new file for a plan to take over the world.")
print(out)
1 year ago
```
### `SwarmNetwork`
1 year ago
`SwarmNetwork` provides the infrasturcture for building extremely dense and complex multi-agent applications that span across various types of agents.
1 year ago
1 year ago
✅ Efficient Task Management: SwarmNetwork's intelligent agent pool and task queue management system ensures tasks are distributed evenly across agents. This leads to efficient use of resources and faster task completion.
1 year ago
1 year ago
✅ Scalability: SwarmNetwork can dynamically scale the number of agents based on the number of pending tasks. This means it can handle an increase in workload by adding more agents, and conserve resources when the workload is low by reducing the number of agents.
✅ Versatile Deployment Options: With SwarmNetwork, each agent can be run on its own thread, process, container, machine, or even cluster. This provides a high degree of flexibility and allows for deployment that best suits the user's needs and infrastructure.
1 year ago
```python
import os
from dotenv import load_dotenv
# Import the OpenAIChat model and the Agent struct
11 months ago
from swarms import Agent, OpenAIChat, SwarmNetwork
1 year ago
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
## Initialize the workflow
1 year ago
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
# Load the swarmnet with the agents
swarmnet = SwarmNetwork(
agents=[agent, agent2, agent3],
)
1 year ago
# List the agents in the swarm network
out = swarmnet.list_agents()
print(out)
1 year ago
# Run the workflow on a task
1 year ago
out = swarmnet.run_single_agent(
agent2.id, "Generate a 10,000 word blog on health and wellness."
)
print(out)
1 year ago
# Run all the agents in the swarm network on a task
11 months ago
out = swarmnet.run_many_agents("Generate a 10,000 word blog on health and wellness.")
1 year ago
print(out)
```
1 year ago
1 year ago
### `Task`
1 year ago
`Task` is a simple structure for task execution with the `Agent`. Imagine zapier for LLM-based workflow automation
1 year ago
1 year ago
✅ Task is a structure for task execution with the Agent.
✅ Tasks can have descriptions, scheduling, triggers, actions, conditions, dependencies, priority, and a history.
✅ The Task structure allows for efficient workflow automation with LLM-based agents.
1 year ago
```python
import os
1 year ago
from dotenv import load_dotenv
from swarms.structs import Agent, OpenAIChat, Task
1 year ago
1 year ago
# Load the environment variables
load_dotenv()
1 year ago
# Define a function to be used as the action
def my_action():
print("Action executed")
# Define a function to be used as the condition
def my_condition():
print("Condition checked")
return True
# Create an agent
agent = Agent(
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
max_loops=1,
dashboard=False,
1 year ago
)
1 year ago
# Create a task
task = Task(
description=(
"Generate a report on the top 3 biggest expenses for small"
" businesses and how businesses can save 20%"
),
agent=agent,
)
1 year ago
# Set the action and condition
task.set_action(my_action)
task.set_condition(my_condition)
# Execute the task
print("Executing task...")
task.run()
# Check if the task is completed
if task.is_completed():
print("Task completed")
else:
print("Task not completed")
# Output the result of the task
print(f"Task result: {task.result}")
1 year ago
```
1 year ago
---
1 year ago
### `BlockList`
- Modularity and Flexibility: BlocksList allows users to create custom swarms by adding or removing different classes or functions as blocks. This means users can easily tailor the functionality of their swarm to suit their specific needs.
- Ease of Management: With methods to add, remove, update, and retrieve blocks, BlocksList provides a straightforward way to manage the components of a swarm. This makes it easier to maintain and update the swarm over time.
- Enhanced Searchability: BlocksList offers methods to get blocks by various attributes such as name, type, ID, and parent-related properties. This makes it easier for users to find and work with specific blocks in a large and complex swarm.
```python
import os
from dotenv import load_dotenv
from transformers import AutoModelForCausalLM, AutoTokenizer
10 months ago
from pydantic import BaseModel
11 months ago
from swarms import BlocksList, Gemini, GPT4VisionAPI, Mixtral, OpenAI, ToolAgent
# Load the environment variables
load_dotenv()
# Get the environment variables
openai_api_key = os.getenv("OPENAI_API_KEY")
gemini_api_key = os.getenv("GEMINI_API_KEY")
# Tool Agent
11 months ago
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
10 months ago
# Initialize the schema for the person's information
class Schema(BaseModel):
name: str = Field(..., title="Name of the person")
agent: int = Field(..., title="Age of the person")
is_student: bool = Field(
..., title="Whether the person is a student"
)
courses: list[str] = Field(
..., title="List of courses the person is taking"
)
# Convert the schema to a JSON string
json_schema = base_model_to_json(Schema)
11 months ago
toolagent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
# Blocks List which enables you to build custom swarms by adding classes or functions
swarm = BlocksList(
"SocialMediaSwarm",
"A swarm of social media agents",
[
OpenAI(openai_api_key=openai_api_key),
Mixtral(),
GPT4VisionAPI(openai_api_key=openai_api_key),
Gemini(gemini_api_key=gemini_api_key),
],
)
# Add the new block to the swarm
swarm.add(toolagent)
# Remove a block from the swarm
swarm.remove(toolagent)
# Update a block in the swarm
swarm.update(toolagent)
# Get a block at a specific index
block_at_index = swarm.get(0)
# Get all blocks in the swarm
all_blocks = swarm.get_all()
# Get blocks by name
openai_blocks = swarm.get_by_name("OpenAI")
# Get blocks by type
gpt4_blocks = swarm.get_by_type("GPT4VisionAPI")
# Get blocks by ID
block_by_id = swarm.get_by_id(toolagent.id)
# Get blocks by parent
blocks_by_parent = swarm.get_by_parent(swarm)
# Get blocks by parent ID
blocks_by_parent_id = swarm.get_by_parent_id(swarm.id)
# Get blocks by parent name
blocks_by_parent_name = swarm.get_by_parent_name(swarm.name)
# Get blocks by parent type
blocks_by_parent_type = swarm.get_by_parent_type(type(swarm).__name__)
# Get blocks by parent description
11 months ago
blocks_by_parent_description = swarm.get_by_parent_description(swarm.description)
# Run the block in the swarm
inference = swarm.run_block(toolagent, "Hello World")
print(inference)
```
## Majority Voting
Multiple-agents will evaluate an idea based off of an parsing or evaluation function. From papers like "[More agents is all you need](https://arxiv.org/pdf/2402.05120.pdf)
```python
from swarms import Agent, MajorityVoting, ChromaDB, Anthropic
# Initialize the llm
llm = Anthropic()
# Agents
agent1 = Agent(
llm = llm,
system_prompt="You are the leader of the Progressive Party. What is your stance on healthcare?",
agent_name="Progressive Leader",
agent_description="Leader of the Progressive Party",
long_term_memory=ChromaDB(),
max_steps=1,
)
agent2 = Agent(
llm=llm,
agent_name="Conservative Leader",
agent_description="Leader of the Conservative Party",
long_term_memory=ChromaDB(),
max_steps=1,
)
agent3 = Agent(
llm=llm,
agent_name="Libertarian Leader",
agent_description="Leader of the Libertarian Party",
long_term_memory=ChromaDB(),
max_steps=1,
)
# Initialize the majority voting
mv = MajorityVoting(
agents=[agent1, agent2, agent3],
output_parser=llm.majority_voting,
autosave=False,
verbose=True,
)
# Start the majority voting
mv.run("What is your stance on healthcare?")
```
1 year ago
## Real-World Deployment
1 year ago
### Multi-Agent Swarm for Logistics
1 year ago
Here's a production grade swarm ready for real-world deployment in a factory and logistics settings like warehouses. This swarm can automate 3 costly and inefficient workflows, safety checks, productivity checks, and warehouse security.
1 year ago
```python
import os
11 months ago
1 year ago
from dotenv import load_dotenv
11 months ago
1 year ago
from swarms.models import GPT4VisionAPI
from swarms.prompts.logistics import (
11 months ago
Efficiency_Agent_Prompt,
1 year ago
Health_Security_Agent_Prompt,
Productivity_Agent_Prompt,
11 months ago
Quality_Control_Agent_Prompt,
1 year ago
Safety_Agent_Prompt,
Security_Agent_Prompt,
Sustainability_Agent_Prompt,
)
11 months ago
from swarms.structs import Agent
1 year ago
# Load ENV
load_dotenv()
api_key = os.getenv("OPENAI_API_KEY")
1 year ago
11 months ago
# GPT4VisionAPI
1 year ago
llm = GPT4VisionAPI(openai_api_key=api_key)
# Image for analysis
factory_image = "factory_image1.jpg"
# Initialize agents with respective prompts
health_security_agent = Agent(
llm=llm,
sop=Health_Security_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Quality control agent
quality_control_agent = Agent(
llm=llm,
sop=Quality_Control_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Productivity Agent
productivity_agent = Agent(
llm=llm,
sop=Productivity_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Initiailize safety agent
11 months ago
safety_agent = Agent(llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True)
1 year ago
# Init the security agent
security_agent = Agent(
llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True
)
# Initialize sustainability agent
sustainability_agent = Agent(
llm=llm,
sop=Sustainability_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Initialize efficincy agent
efficiency_agent = Agent(
llm=llm,
sop=Efficiency_Agent_Prompt,
max_loops=1,
multi_modal=True,
)
# Run agents with respective tasks on the same image
health_analysis = health_security_agent.run(
"Analyze the safety of this factory", factory_image
)
quality_analysis = quality_control_agent.run(
"Examine product quality in the factory", factory_image
)
productivity_analysis = productivity_agent.run(
"Evaluate factory productivity", factory_image
)
safety_analysis = safety_agent.run(
"Inspect the factory's adherence to safety standards",
factory_image,
)
security_analysis = security_agent.run(
"Assess the factory's security measures and systems",
factory_image,
)
sustainability_analysis = sustainability_agent.run(
"Examine the factory's sustainability practices", factory_image
)
efficiency_analysis = efficiency_agent.run(
"Analyze the efficiency of the factory's manufacturing process",
factory_image,
)
1 year ago
```
---
## `Multi Modal Autonomous Agents`
1 year ago
Run the agent with multiple modalities useful for various real-world tasks in manufacturing, logistics, and health.
1 year ago
```python
# Description: This is an example of how to use the Agent class to run a multi-modal workflow
import os
11 months ago
1 year ago
from dotenv import load_dotenv
11 months ago
1 year ago
from swarms.models.gpt4_vision_api import GPT4VisionAPI
from swarms.structs import Agent
# Load the environment variables
load_dotenv()
# Get the API key from the environment
api_key = os.environ.get("OPENAI_API_KEY")
# Initialize the language model
llm = GPT4VisionAPI(
openai_api_key=api_key,
max_tokens=500,
)
# Initialize the task
task = (
"Analyze this image of an assembly line and identify any issues such as"
" misaligned parts, defects, or deviations from the standard assembly"
" process. IF there is anything unsafe in the image, explain why it is"
" unsafe and how it could be improved."
)
img = "assembly_line.jpg"
## Initialize the workflow
agent = Agent(
11 months ago
llm=llm, max_loops="auto", autosave=True, dashboard=True, multi_modal=True
1 year ago
)
# Run the workflow on a task
agent.run(task=task, img=img)
```
10 months ago
----
## Build your own LLMs, Agents, and Swarms!
10 months ago
### Swarms Compliant Model Interface
1 year ago
```python
10 months ago
from swarms import AbstractLLM
1 year ago
10 months ago
class vLLMLM(AbstractLLM):
def __init__(self, model_name='default_model', tensor_parallel_size=1, *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.tensor_parallel_size = tensor_parallel_size
# Add any additional initialization here
def run(self, task: str):
pass
1 year ago
10 months ago
# Example
model = vLLMLM("mistral")
1 year ago
# Run the model
10 months ago
out = model("Analyze these financial documents and summarize of them")
1 year ago
print(out)
1 year ago
```
1 year ago
10 months ago
### Swarms Compliant Agent Interface
```python
10 months ago
from swarms import Agent
10 months ago
class MyCustomAgent(Agent):
10 months ago
    def __init__(self, *args, **kwargs):
10 months ago
        super().__init__(*args, **kwargs)
10 months ago
        # Custom initialization logic
10 months ago
    def custom_method(self, *args, **kwargs):
10 months ago
        # Implement custom logic here
10 months ago
        pass
10 months ago
    def run(self, task, *args, **kwargs):
10 months ago
        # Customize the run method
10 months ago
        response = super().run(task, *args, **kwargs)
10 months ago
        # Additional custom logic
10 months ago
        return response`
10 months ago
# Model
agent = MyCustomAgent()
10 months ago
# Run the agent
out = agent("Analyze and summarize these financial documents: ")
print(out)
10 months ago
```
### Compliant Interface for Multi-Agent Collaboration
```python
10 months ago
from swarms import AutoSwarm, AutoSwarmRouter, BaseSwarm
10 months ago
10 months ago
# Build your own Swarm
class MySwarm(BaseSwarm):
10 months ago
def __init__(self, name="kyegomez/myswarm", *args, **kwargs):
10 months ago
super().__init__(*args, **kwargs)
10 months ago
self.name = name
10 months ago
def run(self, task: str, *args, **kwargs):
# Add your multi-agent logic here
# agent 1
# agent 2
# agent 3
return "output of the swarm"
10 months ago
10 months ago
# Add your custom swarm to the AutoSwarmRouter
router = AutoSwarmRouter(
swarms=[MySwarm]
)
# Create an AutoSwarm instance
autoswarm = AutoSwarm(
10 months ago
name="kyegomez/myswarm",
10 months ago
description="A simple API to build and run swarms",
verbose=True,
router=router,
)
# Run the AutoSwarm
autoswarm.run("Analyze these financial data and give me a summary")
10 months ago
```
## `AgentRearrange`
Inspired by Einops and einsum, this orchestration techniques enables you to map out the relationships between various agents. For example you specify linear and sequential relationships like `a -> a1 -> a2 -> a3` or concurrent relationships where the first agent will send a message to 3 agents all at once: `a -> a1, a2, a3`. You can customize your workflow to mix sequential and concurrent relationships
```python
from swarms import Agent, Anthropic, AgentRearrange,
## Initialize the workflow
agent = Agent(
agent_name="t",
agent_description=(
"Generate a transcript for a youtube video on what swarms"
" are!"
),
system_prompt=(
"Generate a transcript for a youtube video on what swarms"
" are!"
),
llm=Anthropic(),
max_loops=1,
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
)
agent2 = Agent(
agent_name="t1",
agent_description=(
"Generate a transcript for a youtube video on what swarms"
" are!"
),
llm=Anthropic(),
max_loops=1,
system_prompt="Summarize the transcript",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
)
agent3 = Agent(
agent_name="t2",
agent_description=(
"Generate a transcript for a youtube video on what swarms"
" are!"
),
llm=Anthropic(),
max_loops=1,
system_prompt="Finalize the transcript",
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
stopping_token="<DONE>",
)
# Rearrange the agents
rearrange = AgentRearrange(
agents=[agent, agent2, agent3],
verbose=True,
# custom_prompt="Summarize the transcript",
)
# Run the workflow on a task
results = rearrange(
# pattern="t -> t1, t2 -> t2",
pattern="t -> t1 -> t2",
default_task=(
"Generate a transcript for a YouTube video on what swarms"
" are!"
),
t="Generate a transcript for a YouTube video on what swarms are!",
# t2="Summarize the transcript",
# t3="Finalize the transcript",
)
# print(results)
```
---
## Documentation
Documentation is located here at: [swarms.apac.ai](https://swarms.apac.ai)
2 years ago
----
2 years ago
1 year ago
## 🫶 Contributions:
The easiest way to contribute is to pick any issue with the `good first issue` tag 💪. Read the Contributing guidelines [here](/CONTRIBUTING.md). Bug Report? [File here](https://github.com/swarms/gateway/issues) | Feature Request? [File here](https://github.com/swarms/gateway/issues)
1 year ago
Swarms is an open-source project, and contributions are VERY welcome. If you want to contribute, you can create new features, fix bugs, or improve the infrastructure. Please refer to the [CONTRIBUTING.md](https://github.com/kyegomez/swarms/blob/master/CONTRIBUTING.md) and our [contributing board](https://github.com/users/kyegomez/projects/1) to participate in Roadmap discussions!
1 year ago
<a href="https://github.com/kyegomez/swarms/graphs/contributors">
<img src="https://contrib.rocks/image?repo=kyegomez/swarms" />
</a>
1 year ago
----
1 year ago
## Community
Join our growing community around the world, for real-time support, ideas, and discussions on Swarms 😊
- View our official [Blog](https://swarms.apac.ai)
- Chat live with us on [Discord](https://discord.gg/kS3rwKs3ZC)
- Follow us on [Twitter](https://twitter.com/kyegomez)
- Connect with us on [LinkedIn](https://www.linkedin.com/company/the-swarm-corporation)
- Visit us on [YouTube](https://www.youtube.com/channel/UC9yXyitkbU_WSy7bd_41SqQ)
1 year ago
- [Join the Swarms community on Discord!](https://discord.gg/AJazBmhKnr)
- Join our Swarms Community Gathering every Thursday at 1pm NYC Time to unlock the potential of autonomous agents in automating your daily tasks [Sign up here](https://lu.ma/5p2jnc2v)
---
1 year ago
## Discovery Call
1 year ago
Book a discovery call to learn how Swarms can lower your operating costs by 40% with swarms of autonomous agents in lightspeed. [Click here to book a time that works for you!](https://calendly.com/swarm-corp/30min?month=2023-11)
## Accelerate Backlog
Help us accelerate our backlog by supporting us financially! Note, we're an open source corporation and so all the revenue we generate is through donations at the moment ;)
<a href="https://polar.sh/kyegomez"><img src="https://polar.sh/embed/fund-our-backlog.svg?org=kyegomez" /></a>
## File Structure
The swarms package has been meticlously crafted for extreme use-ability and understanding, the swarms package is split up into various modules such as `swarms.agents` that holds pre-built agents, `swarms.structs` that holds a vast array of structures like `Agent` and multi agent structures. The 3 most important are `structs`, `models`, and `agents`.
```sh
├── __init__.py
├── agents
├── artifacts
├── chunkers
├── cli
├── loaders
├── memory
├── models
├── prompts
├── structs
├── telemetry
├── tokenizers
├── tools
├── utils
└── workers
```
11 months ago
## Docker Instructions
This application uses Docker with CUDA support. To build and run the Docker container, follow these steps:
### Prerequisites
- Make sure you have [Docker installed](https://docs.docker.com/get-docker/) on your machine.
- Ensure your machine has an NVIDIA GPU and [NVIDIA Docker support](https://github.com/NVIDIA/nvidia-docker) installed.
### Building the Docker Image
To build the Docker image, navigate to the root directory containing the `Dockerfile` and run the following command:
```bash
docker build --gpus all -t swarms
```
### Running the Docker Container
To run the Docker container, use the following command:
11 months ago
`docker run --gpus all -p 4000:80 swarms`
11 months ago
11 months ago
Replace swarms with the name of your Docker image, and replace 4000:80 with your actual port mapping. The format is hostPort:containerPort.
11 months ago
Now, your application should be running with CUDA support!
## Swarm Newsletter 🤖 🤖 🤖 📧
1 year ago
Sign up to the Swarm newsletter to receive updates on the latest Autonomous agent research papers, step by step guides on creating multi-agent app, and much more Swarmie goodiness 😊
[CLICK HERE TO SIGNUP](https://docs.google.com/forms/d/e/1FAIpQLSfqxI2ktPR9jkcIwzvHL0VY6tEIuVPd-P2fOWKnd6skT9j1EQ/viewform?usp=sf_link)
# License
1 year ago
Apache License
1 year ago