|
|
|
import os
|
|
|
|
from dotenv import load_dotenv
|
|
|
|
from swarm_models import OpenAIChat
|
|
|
|
from swarms import Agent, GroupChat, expertise_based
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
|
|
|
|
|
|
load_dotenv()
|
|
|
|
|
|
|
|
# Get the OpenAI API key from the environment variable
|
|
|
|
api_key = os.getenv("GROQ_API_KEY")
|
|
|
|
|
|
|
|
# Model
|
|
|
|
model = OpenAIChat(
|
|
|
|
openai_api_base="https://api.groq.com/openai/v1",
|
|
|
|
openai_api_key=api_key,
|
|
|
|
model_name="llama-3.1-70b-versatile",
|
|
|
|
temperature=0.1,
|
|
|
|
)
|
|
|
|
|
|
|
|
# Example agents
|
|
|
|
agent1 = Agent(
|
|
|
|
agent_name="Financial-Analysis-Agent",
|
|
|
|
system_prompt="You are a friendly financial analyst specializing in investment strategies. Be approachable and conversational.",
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
user_name="swarms_corp",
|
|
|
|
output_type="string",
|
|
|
|
streaming_on=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
agent2 = Agent(
|
|
|
|
agent_name="Tax-Adviser-Agent",
|
|
|
|
system_prompt="You are a tax adviser who provides clear, concise, and approachable guidance on tax-related queries.",
|
|
|
|
llm=model,
|
|
|
|
max_loops=1,
|
|
|
|
dynamic_temperature_enabled=True,
|
|
|
|
user_name="swarms_corp",
|
|
|
|
output_type="string",
|
|
|
|
streaming_on=True,
|
|
|
|
)
|
|
|
|
|
|
|
|
# agent3 = Agent(
|
|
|
|
# agent_name="Stock-Buying-Agent",
|
|
|
|
# system_prompt="You are a stock market expert who provides insights on buying and selling stocks. Be informative and concise.",
|
|
|
|
# llm=model,
|
|
|
|
# max_loops=1,
|
|
|
|
# dynamic_temperature_enabled=True,
|
|
|
|
# user_name="swarms_corp",
|
|
|
|
# retry_attempts=1,
|
|
|
|
# context_length=200000,
|
|
|
|
# output_type="string",
|
|
|
|
# streaming_on=True,
|
|
|
|
# )
|
|
|
|
|
|
|
|
agents = [agent1, agent2]
|
|
|
|
|
|
|
|
chat = GroupChat(
|
|
|
|
name="Investment Advisory",
|
|
|
|
description="Financial, tax, and stock analysis group",
|
|
|
|
agents=agents,
|
|
|
|
speaker_fn=expertise_based,
|
|
|
|
)
|
|
|
|
|
|
|
|
history = chat.run(
|
|
|
|
"How to save on taxes for stocks, ETFs, and mutual funds?"
|
|
|
|
)
|
|
|
|
print(history.model_dump_json(indent=2))
|