You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
swarms/playground/agents/jamba_tool_agent.py

59 lines
1.7 KiB

from pydantic import BaseModel, Field
from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms import ToolAgent
from swarms.utils.json_utils import base_model_to_json
# Model name
model_name = "ai21labs/Jamba-v0.1"
# Load the pre-trained model and tokenizer
model = AutoModelForCausalLM.from_pretrained(
model_name,
device_map="auto",
)
# Load the pre-trained model and tokenizer
tokenizer = AutoTokenizer.from_pretrained(model_name)
# Initialize the schema for the person's information
class APIExampleRequestSchema(BaseModel):
endpoint: str = Field(
..., description="The API endpoint for the example request"
)
method: str = Field(
..., description="The HTTP method for the example request"
)
headers: dict = Field(
..., description="The headers for the example request"
)
body: dict = Field(
..., description="The body of the example request"
)
response: dict = Field(
..., description="The expected response of the example request"
)
# Convert the schema to a JSON string
api_example_schema = base_model_to_json(APIExampleRequestSchema)
# Convert the schema to a JSON string
# Define the task to generate a person's information
task = (
"Generate an example API request using this code:\n"
)
# Create an instance of the ToolAgent class
agent = ToolAgent(
name="Command R Tool Agent",
description="An agent that generates an API request using the Command R model.",
model=model,
tokenizer=tokenizer,
json_schema=api_example_schema,
)
# Run the agent to generate the person's information
generated_data = agent(task)
# Print the generated data
print(f"Generated data: {generated_data}")