Merge pull request #1187 from Steve-Dusty/master
[DOCS][BUGF-VLLM][removed all instances of VLLM because VLLM implementation is nonexistent]pull/1190/merge
commit
00356b49f0
@ -1,429 +0,0 @@
|
||||
# VLLM Swarm Agents
|
||||
|
||||
!!! tip "Quick Summary"
|
||||
This guide demonstrates how to create a sophisticated multi-agent system using VLLM and Swarms for comprehensive stock market analysis. You'll learn how to configure and orchestrate multiple AI agents working together to provide deep market insights.
|
||||
|
||||
## Overview
|
||||
|
||||
The example showcases how to build a stock analysis system with 5 specialized agents:
|
||||
|
||||
- Technical Analysis Agent
|
||||
- Fundamental Analysis Agent
|
||||
- Market Sentiment Agent
|
||||
- Quantitative Strategy Agent
|
||||
- Portfolio Strategy Agent
|
||||
|
||||
Each agent has specific expertise and works collaboratively through a concurrent workflow.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
!!! warning "Requirements"
|
||||
Before starting, ensure you have:
|
||||
|
||||
- Python 3.7 or higher
|
||||
- The Swarms package installed
|
||||
- Access to VLLM compatible models
|
||||
- Sufficient compute resources for running VLLM
|
||||
|
||||
## Installation
|
||||
|
||||
!!! example "Setup Steps"
|
||||
|
||||
1. Install the Swarms package:
|
||||
```bash
|
||||
pip install swarms
|
||||
```
|
||||
|
||||
2. Install VLLM dependencies (if not already installed):
|
||||
```bash
|
||||
pip install vllm
|
||||
```
|
||||
|
||||
## Basic Usage
|
||||
|
||||
Here's a complete example of setting up the stock analysis swarm:
|
||||
|
||||
```python
|
||||
from swarms import Agent, ConcurrentWorkflow
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
# Initialize the VLLM wrapper
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
)
|
||||
```
|
||||
|
||||
!!! note "Model Selection"
|
||||
The example uses Llama-2-7b-chat, but you can use any VLLM-compatible model. Make sure you have the necessary permissions and resources to run your chosen model.
|
||||
|
||||
## Agent Configuration
|
||||
|
||||
### Technical Analysis Agent
|
||||
|
||||
```python
|
||||
technical_analyst = Agent(
|
||||
agent_name="Technical-Analysis-Agent",
|
||||
agent_description="Expert in technical analysis and chart patterns",
|
||||
system_prompt="""You are an expert Technical Analysis Agent specializing in market technicals and chart patterns. Your responsibilities include:
|
||||
|
||||
1. PRICE ACTION ANALYSIS
|
||||
- Identify key support and resistance levels
|
||||
- Analyze price trends and momentum
|
||||
- Detect chart patterns (e.g., head & shoulders, triangles, flags)
|
||||
- Evaluate volume patterns and their implications
|
||||
|
||||
2. TECHNICAL INDICATORS
|
||||
- Calculate and interpret moving averages (SMA, EMA)
|
||||
- Analyze momentum indicators (RSI, MACD, Stochastic)
|
||||
- Evaluate volume indicators (OBV, Volume Profile)
|
||||
- Monitor volatility indicators (Bollinger Bands, ATR)
|
||||
|
||||
3. TRADING SIGNALS
|
||||
- Generate clear buy/sell signals based on technical criteria
|
||||
- Identify potential entry and exit points
|
||||
- Set appropriate stop-loss and take-profit levels
|
||||
- Calculate position sizing recommendations
|
||||
|
||||
4. RISK MANAGEMENT
|
||||
- Assess market volatility and trend strength
|
||||
- Identify potential reversal points
|
||||
- Calculate risk/reward ratios for trades
|
||||
- Suggest position sizing based on risk parameters
|
||||
|
||||
Your analysis should be data-driven, precise, and actionable. Always include specific price levels, time frames, and risk parameters in your recommendations.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
```
|
||||
|
||||
!!! tip "Agent Customization"
|
||||
Each agent can be customized with different:
|
||||
|
||||
- System prompts
|
||||
|
||||
- Temperature settings
|
||||
|
||||
- Max token limits
|
||||
|
||||
- Response formats
|
||||
|
||||
## Running the Swarm
|
||||
|
||||
To execute the swarm analysis:
|
||||
|
||||
```python
|
||||
swarm = ConcurrentWorkflow(
|
||||
name="Stock-Analysis-Swarm",
|
||||
description="A swarm of agents that analyze stocks and provide comprehensive analysis.",
|
||||
agents=stock_analysis_agents,
|
||||
)
|
||||
|
||||
# Run the analysis
|
||||
response = swarm.run("Analyze the best etfs for gold and other similar commodities in volatile markets")
|
||||
```
|
||||
|
||||
|
||||
|
||||
## Full Code Example
|
||||
|
||||
```python
|
||||
from swarms import Agent, ConcurrentWorkflow
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
# Initialize the VLLM wrapper
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
)
|
||||
|
||||
# Technical Analysis Agent
|
||||
technical_analyst = Agent(
|
||||
agent_name="Technical-Analysis-Agent",
|
||||
agent_description="Expert in technical analysis and chart patterns",
|
||||
system_prompt="""You are an expert Technical Analysis Agent specializing in market technicals and chart patterns. Your responsibilities include:
|
||||
|
||||
1. PRICE ACTION ANALYSIS
|
||||
- Identify key support and resistance levels
|
||||
- Analyze price trends and momentum
|
||||
- Detect chart patterns (e.g., head & shoulders, triangles, flags)
|
||||
- Evaluate volume patterns and their implications
|
||||
|
||||
2. TECHNICAL INDICATORS
|
||||
- Calculate and interpret moving averages (SMA, EMA)
|
||||
- Analyze momentum indicators (RSI, MACD, Stochastic)
|
||||
- Evaluate volume indicators (OBV, Volume Profile)
|
||||
- Monitor volatility indicators (Bollinger Bands, ATR)
|
||||
|
||||
3. TRADING SIGNALS
|
||||
- Generate clear buy/sell signals based on technical criteria
|
||||
- Identify potential entry and exit points
|
||||
- Set appropriate stop-loss and take-profit levels
|
||||
- Calculate position sizing recommendations
|
||||
|
||||
4. RISK MANAGEMENT
|
||||
- Assess market volatility and trend strength
|
||||
- Identify potential reversal points
|
||||
- Calculate risk/reward ratios for trades
|
||||
- Suggest position sizing based on risk parameters
|
||||
|
||||
Your analysis should be data-driven, precise, and actionable. Always include specific price levels, time frames, and risk parameters in your recommendations.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Fundamental Analysis Agent
|
||||
fundamental_analyst = Agent(
|
||||
agent_name="Fundamental-Analysis-Agent",
|
||||
agent_description="Expert in company fundamentals and valuation",
|
||||
system_prompt="""You are an expert Fundamental Analysis Agent specializing in company valuation and financial metrics. Your core responsibilities include:
|
||||
|
||||
1. FINANCIAL STATEMENT ANALYSIS
|
||||
- Analyze income statements, balance sheets, and cash flow statements
|
||||
- Calculate and interpret key financial ratios
|
||||
- Evaluate revenue growth and profit margins
|
||||
- Assess company's debt levels and cash position
|
||||
|
||||
2. VALUATION METRICS
|
||||
- Calculate fair value using multiple valuation methods:
|
||||
* Discounted Cash Flow (DCF)
|
||||
* Price-to-Earnings (P/E)
|
||||
* Price-to-Book (P/B)
|
||||
* Enterprise Value/EBITDA
|
||||
- Compare valuations against industry peers
|
||||
|
||||
3. BUSINESS MODEL ASSESSMENT
|
||||
- Evaluate competitive advantages and market position
|
||||
- Analyze industry dynamics and market share
|
||||
- Assess management quality and corporate governance
|
||||
- Identify potential risks and growth opportunities
|
||||
|
||||
4. ECONOMIC CONTEXT
|
||||
- Consider macroeconomic factors affecting the company
|
||||
- Analyze industry cycles and trends
|
||||
- Evaluate regulatory environment and compliance
|
||||
- Assess global market conditions
|
||||
|
||||
Your analysis should be comprehensive, focusing on both quantitative metrics and qualitative factors that impact long-term value.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Market Sentiment Agent
|
||||
sentiment_analyst = Agent(
|
||||
agent_name="Market-Sentiment-Agent",
|
||||
agent_description="Expert in market psychology and sentiment analysis",
|
||||
system_prompt="""You are an expert Market Sentiment Agent specializing in analyzing market psychology and investor behavior. Your key responsibilities include:
|
||||
|
||||
1. SENTIMENT INDICATORS
|
||||
- Monitor and interpret market sentiment indicators:
|
||||
* VIX (Fear Index)
|
||||
* Put/Call Ratio
|
||||
* Market Breadth
|
||||
* Investor Surveys
|
||||
- Track institutional vs retail investor behavior
|
||||
|
||||
2. NEWS AND SOCIAL MEDIA ANALYSIS
|
||||
- Analyze news flow and media sentiment
|
||||
- Monitor social media trends and discussions
|
||||
- Track analyst recommendations and changes
|
||||
- Evaluate corporate insider trading patterns
|
||||
|
||||
3. MARKET POSITIONING
|
||||
- Assess hedge fund positioning and exposure
|
||||
- Monitor short interest and short squeeze potential
|
||||
- Track fund flows and asset allocation trends
|
||||
- Analyze options market sentiment
|
||||
|
||||
4. CONTRARIAN SIGNALS
|
||||
- Identify extreme sentiment readings
|
||||
- Detect potential market turning points
|
||||
- Analyze historical sentiment patterns
|
||||
- Provide contrarian trading opportunities
|
||||
|
||||
Your analysis should combine quantitative sentiment metrics with qualitative assessment of market psychology and crowd behavior.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Quantitative Strategy Agent
|
||||
quant_analyst = Agent(
|
||||
agent_name="Quantitative-Strategy-Agent",
|
||||
agent_description="Expert in quantitative analysis and algorithmic strategies",
|
||||
system_prompt="""You are an expert Quantitative Strategy Agent specializing in data-driven investment strategies. Your primary responsibilities include:
|
||||
|
||||
1. FACTOR ANALYSIS
|
||||
- Analyze and monitor factor performance:
|
||||
* Value
|
||||
* Momentum
|
||||
* Quality
|
||||
* Size
|
||||
* Low Volatility
|
||||
- Calculate factor exposures and correlations
|
||||
|
||||
2. STATISTICAL ANALYSIS
|
||||
- Perform statistical arbitrage analysis
|
||||
- Calculate and monitor pair trading opportunities
|
||||
- Analyze market anomalies and inefficiencies
|
||||
- Develop mean reversion strategies
|
||||
|
||||
3. RISK MODELING
|
||||
- Build and maintain risk models
|
||||
- Calculate portfolio optimization metrics
|
||||
- Monitor correlation matrices
|
||||
- Analyze tail risk and stress scenarios
|
||||
|
||||
4. ALGORITHMIC STRATEGIES
|
||||
- Develop systematic trading strategies
|
||||
- Backtest and validate trading algorithms
|
||||
- Monitor strategy performance metrics
|
||||
- Optimize execution algorithms
|
||||
|
||||
Your analysis should be purely quantitative, based on statistical evidence and mathematical models rather than subjective opinions.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Portfolio Strategy Agent
|
||||
portfolio_strategist = Agent(
|
||||
agent_name="Portfolio-Strategy-Agent",
|
||||
agent_description="Expert in portfolio management and asset allocation",
|
||||
system_prompt="""You are an expert Portfolio Strategy Agent specializing in portfolio construction and management. Your core responsibilities include:
|
||||
|
||||
1. ASSET ALLOCATION
|
||||
- Develop strategic asset allocation frameworks
|
||||
- Recommend tactical asset allocation shifts
|
||||
- Optimize portfolio weightings
|
||||
- Balance risk and return objectives
|
||||
|
||||
2. PORTFOLIO ANALYSIS
|
||||
- Calculate portfolio risk metrics
|
||||
- Monitor sector and factor exposures
|
||||
- Analyze portfolio correlation matrix
|
||||
- Track performance attribution
|
||||
|
||||
3. RISK MANAGEMENT
|
||||
- Implement portfolio hedging strategies
|
||||
- Monitor and adjust position sizing
|
||||
- Set stop-loss and rebalancing rules
|
||||
- Develop drawdown protection strategies
|
||||
|
||||
4. PORTFOLIO OPTIMIZATION
|
||||
- Calculate efficient frontier analysis
|
||||
- Optimize for various objectives:
|
||||
* Maximum Sharpe Ratio
|
||||
* Minimum Volatility
|
||||
* Maximum Diversification
|
||||
- Consider transaction costs and taxes
|
||||
|
||||
Your recommendations should focus on portfolio-level decisions that optimize risk-adjusted returns while meeting specific investment objectives.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Create a list of all agents
|
||||
stock_analysis_agents = [
|
||||
technical_analyst,
|
||||
fundamental_analyst,
|
||||
sentiment_analyst,
|
||||
quant_analyst,
|
||||
portfolio_strategist
|
||||
]
|
||||
|
||||
swarm = ConcurrentWorkflow(
|
||||
name="Stock-Analysis-Swarm",
|
||||
description="A swarm of agents that analyze stocks and provide a comprehensive analysis of the current trends and opportunities.",
|
||||
agents=stock_analysis_agents,
|
||||
)
|
||||
|
||||
swarm.run("Analyze the best etfs for gold and other similiar commodities in volatile markets")
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
!!! success "Optimization Tips"
|
||||
1. **Agent Design**
|
||||
- Keep system prompts focused and specific
|
||||
|
||||
- Use clear role definitions
|
||||
|
||||
- Include error handling guidelines
|
||||
|
||||
2. **Resource Management**
|
||||
|
||||
- Monitor memory usage with large models
|
||||
|
||||
- Implement proper cleanup procedures
|
||||
|
||||
- Use batching for multiple queries
|
||||
|
||||
3. **Output Handling**
|
||||
|
||||
- Implement proper logging
|
||||
|
||||
- Format outputs consistently
|
||||
|
||||
- Include error checking
|
||||
|
||||
## Common Issues and Solutions
|
||||
|
||||
!!! warning "Troubleshooting"
|
||||
Common issues you might encounter:
|
||||
|
||||
1. **Memory Issues**
|
||||
|
||||
- *Problem*: VLLM consuming too much memory
|
||||
|
||||
- *Solution*: Adjust batch sizes and model parameters
|
||||
|
||||
2. **Agent Coordination**
|
||||
|
||||
- *Problem*: Agents providing conflicting information
|
||||
|
||||
- *Solution*: Implement consensus mechanisms or priority rules
|
||||
|
||||
3. **Performance**
|
||||
|
||||
- *Problem*: Slow response times
|
||||
|
||||
- *Solution*: Use proper batching and optimize model loading
|
||||
|
||||
## FAQ
|
||||
|
||||
??? question "Can I use different models for different agents?"
|
||||
Yes, you can initialize multiple VLLM wrappers with different models for each agent. However, be mindful of memory usage.
|
||||
|
||||
??? question "How many agents can run concurrently?"
|
||||
The number depends on your hardware resources. Start with 3-5 agents and scale based on performance.
|
||||
|
||||
??? question "Can I customize agent communication patterns?"
|
||||
Yes, you can modify the ConcurrentWorkflow class or create custom workflows for specific communication patterns.
|
||||
|
||||
## Advanced Configuration
|
||||
|
||||
!!! example "Extended Settings"
|
||||
```python
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
temperature=0.7,
|
||||
max_tokens=2048,
|
||||
top_p=0.95,
|
||||
)
|
||||
```
|
||||
|
||||
## Contributing
|
||||
|
||||
!!! info "Get Involved"
|
||||
We welcome contributions! Here's how you can help:
|
||||
|
||||
1. Report bugs and issues
|
||||
2. Submit feature requests
|
||||
3. Contribute to documentation
|
||||
4. Share example use cases
|
||||
|
||||
## Resources
|
||||
|
||||
!!! abstract "Additional Reading"
|
||||
- [VLLM Documentation](https://docs.vllm.ai/en/latest/)
|
||||
|
||||
@ -1,194 +0,0 @@
|
||||
|
||||
|
||||
# vLLM Integration Guide
|
||||
|
||||
!!! info "Overview"
|
||||
vLLM is a high-performance and easy-to-use library for LLM inference and serving. This guide explains how to integrate vLLM with Swarms for efficient, production-grade language model deployment.
|
||||
|
||||
|
||||
## Installation
|
||||
|
||||
!!! note "Prerequisites"
|
||||
Before you begin, make sure you have Python 3.8+ installed on your system.
|
||||
|
||||
=== "pip"
|
||||
```bash
|
||||
pip install -U vllm swarms
|
||||
```
|
||||
|
||||
=== "poetry"
|
||||
```bash
|
||||
poetry add vllm swarms
|
||||
```
|
||||
|
||||
## Basic Usage
|
||||
|
||||
Here's a simple example of how to use vLLM with Swarms:
|
||||
|
||||
```python title="basic_usage.py"
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
# Initialize the vLLM wrapper
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
temperature=0.7,
|
||||
max_tokens=4000
|
||||
)
|
||||
|
||||
# Run inference
|
||||
response = vllm.run("What is the capital of France?")
|
||||
print(response)
|
||||
```
|
||||
|
||||
## VLLMWrapper Class
|
||||
|
||||
!!! abstract "Class Overview"
|
||||
The `VLLMWrapper` class provides a convenient interface for working with vLLM models.
|
||||
|
||||
### Key Parameters
|
||||
|
||||
| Parameter | Type | Description | Default |
|
||||
|-----------|------|-------------|---------|
|
||||
| `model_name` | str | Name of the model to use | "meta-llama/Llama-2-7b-chat-hf" |
|
||||
| `system_prompt` | str | System prompt to use | None |
|
||||
| `stream` | bool | Whether to stream the output | False |
|
||||
| `temperature` | float | Sampling temperature | 0.5 |
|
||||
| `max_tokens` | int | Maximum number of tokens to generate | 4000 |
|
||||
|
||||
### Example with Custom Parameters
|
||||
|
||||
```python title="custom_parameters.py"
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-13b-chat-hf",
|
||||
system_prompt="You are an expert in artificial intelligence.",
|
||||
temperature=0.8,
|
||||
max_tokens=2000
|
||||
)
|
||||
```
|
||||
|
||||
## Integration with Agents
|
||||
|
||||
You can easily integrate vLLM with Swarms agents for more complex workflows:
|
||||
|
||||
```python title="agent_integration.py"
|
||||
from swarms import Agent
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
# Initialize vLLM
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant."
|
||||
)
|
||||
|
||||
# Create an agent with vLLM
|
||||
agent = Agent(
|
||||
agent_name="Research-Agent",
|
||||
agent_description="Expert in conducting research and analysis",
|
||||
system_prompt="""You are an expert research agent. Your tasks include:
|
||||
1. Analyzing complex topics
|
||||
2. Providing detailed summaries
|
||||
3. Making data-driven recommendations""",
|
||||
llm=vllm,
|
||||
max_loops=1
|
||||
)
|
||||
|
||||
# Run the agent
|
||||
response = agent.run("Research the impact of AI on healthcare")
|
||||
```
|
||||
|
||||
## Advanced Features
|
||||
|
||||
### Batch Processing
|
||||
|
||||
!!! tip "Performance Optimization"
|
||||
Use batch processing for efficient handling of multiple tasks simultaneously.
|
||||
|
||||
```python title="batch_processing.py"
|
||||
tasks = [
|
||||
"What is machine learning?",
|
||||
"Explain neural networks",
|
||||
"Describe deep learning"
|
||||
]
|
||||
|
||||
results = vllm.batched_run(tasks, batch_size=3)
|
||||
```
|
||||
|
||||
### Error Handling
|
||||
|
||||
!!! warning "Error Management"
|
||||
Always implement proper error handling in production environments.
|
||||
|
||||
```python title="error_handling.py"
|
||||
from loguru import logger
|
||||
|
||||
try:
|
||||
response = vllm.run("Complex task")
|
||||
except Exception as error:
|
||||
logger.error(f"Error occurred: {error}")
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
!!! success "Recommended Practices"
|
||||
=== "Model Selection"
|
||||
- Choose appropriate model sizes based on your requirements
|
||||
- Consider the trade-off between model size and inference speed
|
||||
|
||||
=== "System Resources"
|
||||
- Ensure sufficient GPU memory for your chosen model
|
||||
- Monitor resource usage during batch processing
|
||||
|
||||
=== "Prompt Engineering"
|
||||
- Use clear and specific system prompts
|
||||
- Structure user prompts for optimal results
|
||||
|
||||
=== "Error Handling"
|
||||
- Implement proper error handling and logging
|
||||
- Set up monitoring for production deployments
|
||||
|
||||
=== "Performance"
|
||||
- Use batch processing for multiple tasks
|
||||
- Adjust max_tokens based on your use case
|
||||
- Fine-tune temperature for optimal output quality
|
||||
|
||||
## Example: Multi-Agent System
|
||||
|
||||
Here's an example of creating a multi-agent system using vLLM:
|
||||
|
||||
```python title="multi_agent_system.py"
|
||||
from swarms import Agent, ConcurrentWorkflow
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
# Initialize vLLM
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant."
|
||||
)
|
||||
|
||||
# Create specialized agents
|
||||
research_agent = Agent(
|
||||
agent_name="Research-Agent",
|
||||
agent_description="Expert in research",
|
||||
system_prompt="You are a research expert.",
|
||||
llm=vllm
|
||||
)
|
||||
|
||||
analysis_agent = Agent(
|
||||
agent_name="Analysis-Agent",
|
||||
agent_description="Expert in analysis",
|
||||
system_prompt="You are an analysis expert.",
|
||||
llm=vllm
|
||||
)
|
||||
|
||||
# Create a workflow
|
||||
agents = [research_agent, analysis_agent]
|
||||
workflow = ConcurrentWorkflow(
|
||||
name="Research-Analysis-Workflow",
|
||||
description="Comprehensive research and analysis workflow",
|
||||
agents=agents
|
||||
)
|
||||
|
||||
# Run the workflow
|
||||
result = workflow.run("Analyze the impact of renewable energy")
|
||||
```
|
||||
@ -1,214 +0,0 @@
|
||||
from swarms import Agent, ConcurrentWorkflow
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Initialize the VLLM wrapper
|
||||
vllm = VLLMWrapper(
|
||||
model_name="meta-llama/Llama-2-7b-chat-hf",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
)
|
||||
|
||||
# Technical Analysis Agent
|
||||
technical_analyst = Agent(
|
||||
agent_name="Technical-Analysis-Agent",
|
||||
agent_description="Expert in technical analysis and chart patterns",
|
||||
system_prompt="""You are an expert Technical Analysis Agent specializing in market technicals and chart patterns. Your responsibilities include:
|
||||
|
||||
1. PRICE ACTION ANALYSIS
|
||||
- Identify key support and resistance levels
|
||||
- Analyze price trends and momentum
|
||||
- Detect chart patterns (e.g., head & shoulders, triangles, flags)
|
||||
- Evaluate volume patterns and their implications
|
||||
|
||||
2. TECHNICAL INDICATORS
|
||||
- Calculate and interpret moving averages (SMA, EMA)
|
||||
- Analyze momentum indicators (RSI, MACD, Stochastic)
|
||||
- Evaluate volume indicators (OBV, Volume Profile)
|
||||
- Monitor volatility indicators (Bollinger Bands, ATR)
|
||||
|
||||
3. TRADING SIGNALS
|
||||
- Generate clear buy/sell signals based on technical criteria
|
||||
- Identify potential entry and exit points
|
||||
- Set appropriate stop-loss and take-profit levels
|
||||
- Calculate position sizing recommendations
|
||||
|
||||
4. RISK MANAGEMENT
|
||||
- Assess market volatility and trend strength
|
||||
- Identify potential reversal points
|
||||
- Calculate risk/reward ratios for trades
|
||||
- Suggest position sizing based on risk parameters
|
||||
|
||||
Your analysis should be data-driven, precise, and actionable. Always include specific price levels, time frames, and risk parameters in your recommendations.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Fundamental Analysis Agent
|
||||
fundamental_analyst = Agent(
|
||||
agent_name="Fundamental-Analysis-Agent",
|
||||
agent_description="Expert in company fundamentals and valuation",
|
||||
system_prompt="""You are an expert Fundamental Analysis Agent specializing in company valuation and financial metrics. Your core responsibilities include:
|
||||
|
||||
1. FINANCIAL STATEMENT ANALYSIS
|
||||
- Analyze income statements, balance sheets, and cash flow statements
|
||||
- Calculate and interpret key financial ratios
|
||||
- Evaluate revenue growth and profit margins
|
||||
- Assess company's debt levels and cash position
|
||||
|
||||
2. VALUATION METRICS
|
||||
- Calculate fair value using multiple valuation methods:
|
||||
* Discounted Cash Flow (DCF)
|
||||
* Price-to-Earnings (P/E)
|
||||
* Price-to-Book (P/B)
|
||||
* Enterprise Value/EBITDA
|
||||
- Compare valuations against industry peers
|
||||
|
||||
3. BUSINESS MODEL ASSESSMENT
|
||||
- Evaluate competitive advantages and market position
|
||||
- Analyze industry dynamics and market share
|
||||
- Assess management quality and corporate governance
|
||||
- Identify potential risks and growth opportunities
|
||||
|
||||
4. ECONOMIC CONTEXT
|
||||
- Consider macroeconomic factors affecting the company
|
||||
- Analyze industry cycles and trends
|
||||
- Evaluate regulatory environment and compliance
|
||||
- Assess global market conditions
|
||||
|
||||
Your analysis should be comprehensive, focusing on both quantitative metrics and qualitative factors that impact long-term value.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Market Sentiment Agent
|
||||
sentiment_analyst = Agent(
|
||||
agent_name="Market-Sentiment-Agent",
|
||||
agent_description="Expert in market psychology and sentiment analysis",
|
||||
system_prompt="""You are an expert Market Sentiment Agent specializing in analyzing market psychology and investor behavior. Your key responsibilities include:
|
||||
|
||||
1. SENTIMENT INDICATORS
|
||||
- Monitor and interpret market sentiment indicators:
|
||||
* VIX (Fear Index)
|
||||
* Put/Call Ratio
|
||||
* Market Breadth
|
||||
* Investor Surveys
|
||||
- Track institutional vs retail investor behavior
|
||||
|
||||
2. NEWS AND SOCIAL MEDIA ANALYSIS
|
||||
- Analyze news flow and media sentiment
|
||||
- Monitor social media trends and discussions
|
||||
- Track analyst recommendations and changes
|
||||
- Evaluate corporate insider trading patterns
|
||||
|
||||
3. MARKET POSITIONING
|
||||
- Assess hedge fund positioning and exposure
|
||||
- Monitor short interest and short squeeze potential
|
||||
- Track fund flows and asset allocation trends
|
||||
- Analyze options market sentiment
|
||||
|
||||
4. CONTRARIAN SIGNALS
|
||||
- Identify extreme sentiment readings
|
||||
- Detect potential market turning points
|
||||
- Analyze historical sentiment patterns
|
||||
- Provide contrarian trading opportunities
|
||||
|
||||
Your analysis should combine quantitative sentiment metrics with qualitative assessment of market psychology and crowd behavior.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Quantitative Strategy Agent
|
||||
quant_analyst = Agent(
|
||||
agent_name="Quantitative-Strategy-Agent",
|
||||
agent_description="Expert in quantitative analysis and algorithmic strategies",
|
||||
system_prompt="""You are an expert Quantitative Strategy Agent specializing in data-driven investment strategies. Your primary responsibilities include:
|
||||
|
||||
1. FACTOR ANALYSIS
|
||||
- Analyze and monitor factor performance:
|
||||
* Value
|
||||
* Momentum
|
||||
* Quality
|
||||
* Size
|
||||
* Low Volatility
|
||||
- Calculate factor exposures and correlations
|
||||
|
||||
2. STATISTICAL ANALYSIS
|
||||
- Perform statistical arbitrage analysis
|
||||
- Calculate and monitor pair trading opportunities
|
||||
- Analyze market anomalies and inefficiencies
|
||||
- Develop mean reversion strategies
|
||||
|
||||
3. RISK MODELING
|
||||
- Build and maintain risk models
|
||||
- Calculate portfolio optimization metrics
|
||||
- Monitor correlation matrices
|
||||
- Analyze tail risk and stress scenarios
|
||||
|
||||
4. ALGORITHMIC STRATEGIES
|
||||
- Develop systematic trading strategies
|
||||
- Backtest and validate trading algorithms
|
||||
- Monitor strategy performance metrics
|
||||
- Optimize execution algorithms
|
||||
|
||||
Your analysis should be purely quantitative, based on statistical evidence and mathematical models rather than subjective opinions.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Portfolio Strategy Agent
|
||||
portfolio_strategist = Agent(
|
||||
agent_name="Portfolio-Strategy-Agent",
|
||||
agent_description="Expert in portfolio management and asset allocation",
|
||||
system_prompt="""You are an expert Portfolio Strategy Agent specializing in portfolio construction and management. Your core responsibilities include:
|
||||
|
||||
1. ASSET ALLOCATION
|
||||
- Develop strategic asset allocation frameworks
|
||||
- Recommend tactical asset allocation shifts
|
||||
- Optimize portfolio weightings
|
||||
- Balance risk and return objectives
|
||||
|
||||
2. PORTFOLIO ANALYSIS
|
||||
- Calculate portfolio risk metrics
|
||||
- Monitor sector and factor exposures
|
||||
- Analyze portfolio correlation matrix
|
||||
- Track performance attribution
|
||||
|
||||
3. RISK MANAGEMENT
|
||||
- Implement portfolio hedging strategies
|
||||
- Monitor and adjust position sizing
|
||||
- Set stop-loss and rebalancing rules
|
||||
- Develop drawdown protection strategies
|
||||
|
||||
4. PORTFOLIO OPTIMIZATION
|
||||
- Calculate efficient frontier analysis
|
||||
- Optimize for various objectives:
|
||||
* Maximum Sharpe Ratio
|
||||
* Minimum Volatility
|
||||
* Maximum Diversification
|
||||
- Consider transaction costs and taxes
|
||||
|
||||
Your recommendations should focus on portfolio-level decisions that optimize risk-adjusted returns while meeting specific investment objectives.""",
|
||||
max_loops=1,
|
||||
llm=vllm,
|
||||
)
|
||||
|
||||
# Create a list of all agents
|
||||
stock_analysis_agents = [
|
||||
technical_analyst,
|
||||
fundamental_analyst,
|
||||
sentiment_analyst,
|
||||
quant_analyst,
|
||||
portfolio_strategist,
|
||||
]
|
||||
|
||||
swarm = ConcurrentWorkflow(
|
||||
name="Stock-Analysis-Swarm",
|
||||
description="A swarm of agents that analyze stocks and provide a comprehensive analysis of the current trends and opportunities.",
|
||||
agents=stock_analysis_agents,
|
||||
)
|
||||
|
||||
swarm.run(
|
||||
"Analyze the best etfs for gold and other similiar commodities in volatile markets"
|
||||
)
|
||||
@ -0,0 +1,13 @@
|
||||
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||
|
||||
# Initialize the vLLM wrapper
|
||||
vllm = VLLMWrapper(
|
||||
model_name="gpt-4o-mini",
|
||||
system_prompt="You are a helpful assistant.",
|
||||
temperature=0.7,
|
||||
max_tokens=4000
|
||||
)
|
||||
|
||||
# Run inference
|
||||
response = vllm.run("What is the capital of France?")
|
||||
print(response)
|
||||
Loading…
Reference in new issue