parent
2f88e92930
commit
022b39e8f6
@ -1,8 +1,7 @@
|
|||||||
from swarms.models.anthropic import Anthropic
|
from swarms.models import Anthropic
|
||||||
|
|
||||||
model = Anthropic(anthropic_api_key="")
|
model = Anthropic(anthropic_api_key="")
|
||||||
|
|
||||||
|
|
||||||
task = "What is quantum field theory? What are 3 books on the field?"
|
task = "What is quantum field theory? What are 3 books on the field?"
|
||||||
|
|
||||||
print(model(task))
|
print(model(task))
|
||||||
|
@ -1,35 +0,0 @@
|
|||||||
import os
|
|
||||||
|
|
||||||
from swarms.models import OpenAIChat
|
|
||||||
from swarms.models.bing_chat import BingChat
|
|
||||||
from swarms.tools.autogpt import EdgeGPTTool, tool
|
|
||||||
from swarms.workers.worker import Worker
|
|
||||||
|
|
||||||
api_key = os.getenv("OPENAI_API_KEY")
|
|
||||||
|
|
||||||
# Initialize the EdgeGPTModel
|
|
||||||
edgegpt = BingChat(cookies_path="./cookies.txt")
|
|
||||||
|
|
||||||
|
|
||||||
@tool
|
|
||||||
def edgegpt(task: str = None):
|
|
||||||
"""A tool to run infrence on the EdgeGPT Model"""
|
|
||||||
return EdgeGPTTool.run(task)
|
|
||||||
|
|
||||||
|
|
||||||
# Initialize the language model,
|
|
||||||
# This model can be swapped out with Anthropic, ETC, Huggingface Models like Mistral, ETC
|
|
||||||
llm = OpenAIChat(
|
|
||||||
openai_api_key=api_key,
|
|
||||||
temperature=0.5,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Initialize the Worker with the custom tool
|
|
||||||
worker = Worker(
|
|
||||||
llm=llm, ai_name="EdgeGPT Worker", external_tools=[edgegpt]
|
|
||||||
)
|
|
||||||
|
|
||||||
# Use the worker to process a task
|
|
||||||
task = "Hello, my name is ChatGPT"
|
|
||||||
response = worker.run(task)
|
|
||||||
print(response)
|
|
@ -1,24 +0,0 @@
|
|||||||
from swarms.models.bioclip import BioClip
|
|
||||||
|
|
||||||
clip = BioClip(
|
|
||||||
"hf-hub:microsoft/BiomedCLIP-PubMedBERT_256-vit_base_patch16_224"
|
|
||||||
)
|
|
||||||
|
|
||||||
labels = [
|
|
||||||
"adenocarcinoma histopathology",
|
|
||||||
"brain MRI",
|
|
||||||
"covid line chart",
|
|
||||||
"squamous cell carcinoma histopathology",
|
|
||||||
"immunohistochemistry histopathology",
|
|
||||||
"bone X-ray",
|
|
||||||
"chest X-ray",
|
|
||||||
"pie chart",
|
|
||||||
"hematoxylin and eosin histopathology",
|
|
||||||
]
|
|
||||||
|
|
||||||
result = clip("swarms.jpeg", labels)
|
|
||||||
metadata = {
|
|
||||||
"filename": "images/.jpg".split("/")[-1],
|
|
||||||
"top_probs": result,
|
|
||||||
}
|
|
||||||
clip.plot_image_with_metadata("swarms.jpeg", metadata)
|
|
@ -1,7 +0,0 @@
|
|||||||
from swarms.models.biogpt import BioGPTWrapper
|
|
||||||
|
|
||||||
model = BioGPTWrapper()
|
|
||||||
|
|
||||||
out = model("The patient has a fever")
|
|
||||||
|
|
||||||
print(out)
|
|
@ -1,89 +0,0 @@
|
|||||||
from vllm import LLM
|
|
||||||
from swarms import AbstractLLM, Agent, ChromaDB
|
|
||||||
|
|
||||||
|
|
||||||
# Making an instance of the VLLM class
|
|
||||||
class vLLMLM(AbstractLLM):
|
|
||||||
"""
|
|
||||||
This class represents a variant of the Language Model (LLM) called vLLMLM.
|
|
||||||
It extends the AbstractLLM class and provides additional functionality.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
model_name (str): The name of the LLM model to use. Defaults to "acebook/opt-13b".
|
|
||||||
tensor_parallel_size (int): The size of the tensor parallelism. Defaults to 4.
|
|
||||||
*args: Variable length argument list.
|
|
||||||
**kwargs: Arbitrary keyword arguments.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
model_name (str): The name of the LLM model.
|
|
||||||
tensor_parallel_size (int): The size of the tensor parallelism.
|
|
||||||
llm (LLM): An instance of the LLM class.
|
|
||||||
|
|
||||||
Methods:
|
|
||||||
run(task: str, *args, **kwargs): Runs the LLM model to generate output for the given task.
|
|
||||||
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
model_name: str = "acebook/opt-13b",
|
|
||||||
tensor_parallel_size: int = 4,
|
|
||||||
*args,
|
|
||||||
**kwargs,
|
|
||||||
):
|
|
||||||
super().__init__(*args, **kwargs)
|
|
||||||
self.model_name = model_name
|
|
||||||
self.tensor_parallel_size = tensor_parallel_size
|
|
||||||
|
|
||||||
self.llm = LLM(
|
|
||||||
model_name=self.model_name,
|
|
||||||
tensor_parallel_size=self.tensor_parallel_size,
|
|
||||||
)
|
|
||||||
|
|
||||||
def run(self, task: str, *args, **kwargs):
|
|
||||||
"""
|
|
||||||
Runs the LLM model to generate output for the given task.
|
|
||||||
|
|
||||||
Args:
|
|
||||||
task (str): The task for which to generate output.
|
|
||||||
*args: Variable length argument list.
|
|
||||||
**kwargs: Arbitrary keyword arguments.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: The generated output for the given task.
|
|
||||||
|
|
||||||
"""
|
|
||||||
return self.llm.generate(task)
|
|
||||||
|
|
||||||
|
|
||||||
# Initializing the agent with the vLLMLM instance and other parameters
|
|
||||||
model = vLLMLM(
|
|
||||||
"facebook/opt-13b",
|
|
||||||
tensor_parallel_size=4,
|
|
||||||
)
|
|
||||||
|
|
||||||
# Defining the task
|
|
||||||
task = "What are the symptoms of COVID-19?"
|
|
||||||
|
|
||||||
# Running the agent with the specified task
|
|
||||||
out = model.run(task)
|
|
||||||
|
|
||||||
|
|
||||||
# Integrate Agent
|
|
||||||
agent = Agent(
|
|
||||||
agent_name="Doctor agent",
|
|
||||||
agent_description=(
|
|
||||||
"This agent provides information about COVID-19 symptoms."
|
|
||||||
),
|
|
||||||
llm=model,
|
|
||||||
max_loops="auto",
|
|
||||||
autosave=True,
|
|
||||||
verbose=True,
|
|
||||||
long_term_memory=ChromaDB(
|
|
||||||
metric="cosine",
|
|
||||||
n_results=3,
|
|
||||||
output_dir="results",
|
|
||||||
docs_folder="docs",
|
|
||||||
),
|
|
||||||
stopping_condition="finish",
|
|
||||||
)
|
|
@ -1,6 +0,0 @@
|
|||||||
from swarms.models import Dalle3
|
|
||||||
|
|
||||||
dalle3 = Dalle3(openai_api_key="")
|
|
||||||
task = "A painting of a dog"
|
|
||||||
image_url = dalle3(task)
|
|
||||||
print(image_url)
|
|
@ -1,5 +0,0 @@
|
|||||||
from swarms.models.fastvit import FastViT
|
|
||||||
|
|
||||||
fastvit = FastViT()
|
|
||||||
|
|
||||||
result = fastvit(img="images/swarms.jpeg", confidence_threshold=0.5)
|
|
@ -1,7 +0,0 @@
|
|||||||
from swarms.models import JinaEmbeddings
|
|
||||||
|
|
||||||
model = JinaEmbeddings()
|
|
||||||
|
|
||||||
embeddings = model("Encode this text")
|
|
||||||
|
|
||||||
print(embeddings)
|
|
@ -1,5 +1,5 @@
|
|||||||
from swarms.models.palm import PALM
|
from swarms.models import Palm
|
||||||
|
|
||||||
palm = PALM()
|
palm = Palm()
|
||||||
|
|
||||||
out = palm("path/to/image.png")
|
out = palm("what's your name")
|
||||||
|
@ -1,12 +0,0 @@
|
|||||||
from swarms import RoboflowMultiModal
|
|
||||||
|
|
||||||
# Initialize the model
|
|
||||||
model = RoboflowMultiModal(
|
|
||||||
api_key="api",
|
|
||||||
project_id="your project id",
|
|
||||||
hosted=False,
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
# Run the model on an img
|
|
||||||
out = model("img.png")
|
|
@ -1,5 +0,0 @@
|
|||||||
from swarms.models.yi_200k import Yi200k
|
|
||||||
|
|
||||||
models = Yi200k()
|
|
||||||
|
|
||||||
out = models("What is the weather like today?")
|
|
Loading…
Reference in new issue