parent
c7fbc11d09
commit
03302fee63
@ -1,396 +0,0 @@
|
||||
# `CircularSwarm`
|
||||
|
||||
The `CircularSwarm` is a multi-agent orchestration pattern that implements a circular workflow where agents process tasks in a round-robin manner. Each task is passed through all agents in sequence, creating a circular information flow pattern that ensures every agent processes every task.
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
subgraph Circular Flow
|
||||
A1((Agent 1)) --> A2((Agent 2))
|
||||
A2 --> A3((Agent 3))
|
||||
A3 --> A4((Agent 4))
|
||||
A4 --> A1
|
||||
end
|
||||
Task1[Task 1] --> A1
|
||||
Task2[Task 2] --> A2
|
||||
Task3[Task 3] --> A3
|
||||
```
|
||||
|
||||
## Overview
|
||||
|
||||
The Circular Swarm follows a clear workflow pattern:
|
||||
|
||||
1. **Task Distribution**: Each task is distributed to the first agent in the sequence
|
||||
2. **Circular Processing**: Each agent processes the task and passes it to the next agent in the circle
|
||||
3. **Full Coverage**: Every agent processes every task exactly once
|
||||
4. **Context Preservation**: All conversation history and context is maintained throughout the process
|
||||
5. **Ordered Execution**: Tasks are processed in a predictable, ordered manner
|
||||
|
||||
## Key Features
|
||||
|
||||
| Feature | Description |
|
||||
|------------------------------|-----------------------------------------------------------------------------------------------|
|
||||
| **Circular Flow** | Tasks move in a circular pattern through all agents |
|
||||
| **Full Coverage** | Each agent processes each task exactly once |
|
||||
| **Predictable Ordering** | Maintains strict ordering of task processing |
|
||||
| **Context Preservation** | Full conversation history maintained for each agent |
|
||||
| **Flexible Output Formats** | Support for various output types (dict, str, list) |
|
||||
| **Simple Architecture** | Easy to understand and implement |
|
||||
|
||||
## Two Implementation Options
|
||||
|
||||
The Circular Swarm is available in two forms:
|
||||
|
||||
1. **Function-based**: `circular_swarm()` - Simple function for quick usage
|
||||
2. **Class-based**: `CircularSwarm` - Object-oriented approach with more control
|
||||
|
||||
## Function-Based Implementation
|
||||
|
||||
### `circular_swarm()`
|
||||
|
||||
A simple function that implements circular swarm processing.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Parameter | Type | Default | Required | Description |
|
||||
|-----------|------|---------|----------|-------------|
|
||||
| `agents` | `AgentListType` | - | **Yes** | List of Agent objects to participate in the swarm |
|
||||
| `tasks` | `List[str]` | - | **Yes** | List of tasks to be processed by the agents |
|
||||
| `output_type` | `OutputType` | `"dict"` | No | Format for output (dict, str, list) |
|
||||
|
||||
#### Returns
|
||||
|
||||
| Type | Description |
|
||||
|------|-------------|
|
||||
| `Union[Dict[str, Any], List[str]]` | The formatted output of the swarm's processing. If output_type is "dict", returns a dictionary containing the conversation history. If output_type is "list", returns a list of responses. |
|
||||
|
||||
#### Raises
|
||||
|
||||
| Exception | Condition |
|
||||
|-----------|-----------|
|
||||
| `ValueError` | If agents or tasks lists are empty |
|
||||
|
||||
#### Example
|
||||
|
||||
```python
|
||||
from swarms import Agent
|
||||
from swarms.structs.swarming_architectures import circular_swarm
|
||||
|
||||
# Create specialized agents
|
||||
research_agent = Agent(
|
||||
agent_name="Researcher",
|
||||
system_prompt="You are a research specialist. Analyze and gather information.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
analysis_agent = Agent(
|
||||
agent_name="Analyst",
|
||||
system_prompt="You are a data analyst. Analyze data and provide insights.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
writing_agent = Agent(
|
||||
agent_name="Writer",
|
||||
system_prompt="You are a technical writer. Create clear, concise documentation.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
# Execute circular swarm
|
||||
agents = [research_agent, analysis_agent, writing_agent]
|
||||
tasks = [
|
||||
"Research the latest trends in AI",
|
||||
"Analyze market opportunities",
|
||||
"Create a summary report"
|
||||
]
|
||||
|
||||
result = circular_swarm(agents, tasks, output_type="dict")
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Class-Based Implementation
|
||||
|
||||
### `CircularSwarm`
|
||||
|
||||
An object-oriented implementation that provides more control and configurability.
|
||||
|
||||
### Constructor
|
||||
|
||||
#### `CircularSwarm.__init__()`
|
||||
|
||||
Initializes a new CircularSwarm instance.
|
||||
|
||||
##### Parameters
|
||||
|
||||
| Parameter | Type | Default | Required | Description |
|
||||
|-----------|------|---------|----------|-------------|
|
||||
| `agents` | `AgentListType` | - | **Yes** | List of Agent objects or nested list of Agent objects |
|
||||
| `name` | `str` | `"CircularSwarm"` | No | The name identifier for this swarm instance |
|
||||
| `description` | `str` | `"A circular swarm where agents pass tasks in a circular manner"` | No | A description of the swarm's purpose and capabilities |
|
||||
| `output_type` | `str` | `"dict"` | No | Type of output format, one of 'dict', 'list', 'string', 'json', 'yaml', 'xml', etc. |
|
||||
|
||||
##### Returns
|
||||
|
||||
| Type | Description |
|
||||
|------|-------------|
|
||||
| `CircularSwarm` | A new CircularSwarm instance |
|
||||
|
||||
##### Raises
|
||||
|
||||
| Exception | Condition |
|
||||
|-----------|-----------|
|
||||
| `ValueError` | If no agents are provided |
|
||||
|
||||
### Core Methods
|
||||
|
||||
### `run()`
|
||||
|
||||
Executes the circular swarm with the given tasks.
|
||||
|
||||
#### Parameters
|
||||
|
||||
| Parameter | Type | Default | Required | Description |
|
||||
|-----------|------|---------|----------|-------------|
|
||||
| `tasks` | `List[str]` | - | **Yes** | List of tasks to be processed by the swarm |
|
||||
|
||||
#### Returns
|
||||
|
||||
| Type | Description |
|
||||
|------|-------------|
|
||||
| `Union[Dict, List, str]` | The conversation history in the requested format |
|
||||
|
||||
#### Raises
|
||||
|
||||
| Exception | Condition |
|
||||
|-----------|-----------|
|
||||
| `ValueError` | If agents or tasks lists are empty |
|
||||
|
||||
#### Example
|
||||
|
||||
```python
|
||||
from swarms import Agent
|
||||
from swarms.structs.various_alt_swarms import CircularSwarm
|
||||
|
||||
# Create specialized agents
|
||||
market_agent = Agent(
|
||||
agent_name="Market-Analyst",
|
||||
agent_description="Expert in market analysis and trends",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
risk_agent = Agent(
|
||||
agent_name="Risk-Manager",
|
||||
agent_description="Specialist in risk assessment and mitigation",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
portfolio_agent = Agent(
|
||||
agent_name="Portfolio-Manager",
|
||||
agent_description="Expert in portfolio optimization",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
# Initialize the circular swarm
|
||||
swarm = CircularSwarm(
|
||||
name="Investment-Analysis-Swarm",
|
||||
description="A circular swarm for comprehensive investment analysis",
|
||||
agents=[market_agent, risk_agent, portfolio_agent],
|
||||
output_type="dict",
|
||||
)
|
||||
|
||||
# Execute tasks
|
||||
tasks = [
|
||||
"Analyze Tesla stock performance for Q4 2024",
|
||||
"Assess market risks and potential hedging strategies",
|
||||
"Recommend portfolio adjustments based on analysis"
|
||||
]
|
||||
|
||||
result = swarm.run(tasks=tasks)
|
||||
print(result)
|
||||
```
|
||||
|
||||
## Use Cases
|
||||
|
||||
### When to Use Circular Swarm
|
||||
|
||||
Circular Swarm is ideal for scenarios where:
|
||||
|
||||
- **Round-Robin Processing**: You need each agent to process every task in sequence
|
||||
- **Iterative Refinement**: Tasks benefit from multiple perspectives in a specific order
|
||||
- **Quality Assurance**: Each task needs to be reviewed by all agents
|
||||
- **Predictable Workflow**: You need a consistent, ordered processing pattern
|
||||
- **Simple Coordination**: You want a straightforward, easy-to-understand workflow
|
||||
|
||||
### Example Use Cases
|
||||
|
||||
1. **Content Review Pipeline**
|
||||
- Writer → Editor → Fact-Checker → Publisher
|
||||
- Each piece of content goes through all stages
|
||||
|
||||
2. **Financial Analysis Workflow**
|
||||
- Market Analyst → Risk Assessor → Portfolio Manager → Compliance Officer
|
||||
- Each analysis is reviewed by all specialists
|
||||
|
||||
3. **Software Development Process**
|
||||
- Developer → Code Reviewer → QA Tester → Documentation Writer
|
||||
- Each feature goes through all stages
|
||||
|
||||
4. **Quality Control Systems**
|
||||
- Inspector → Validator → Approver → Archivist
|
||||
- Each item is checked by all quality control agents
|
||||
|
||||
## Output Types
|
||||
|
||||
The `CircularSwarm` supports various output formats through the `output_type` parameter:
|
||||
|
||||
| Output Type | Description | Use Case |
|
||||
|-------------|-------------|----------|
|
||||
| `"dict"` | Returns conversation history as a dictionary | When you need structured data with full context |
|
||||
| `"list"` | Returns conversation history as a list | For sequential processing or simple iteration |
|
||||
| `"str"` | Returns conversation history as a string | For simple text output or logging |
|
||||
| `"json"` | Returns conversation history as JSON string | For API responses or data exchange |
|
||||
| `"yaml"` | Returns conversation history as YAML string | For configuration files or documentation |
|
||||
| `"xml"` | Returns conversation history as XML string | For structured data exchange |
|
||||
|
||||
## Advanced Examples
|
||||
|
||||
### Financial Analysis Swarm
|
||||
|
||||
```python
|
||||
from swarms import Agent
|
||||
from swarms.structs.various_alt_swarms import CircularSwarm
|
||||
|
||||
# Create specialized financial agents
|
||||
market_research_agent = Agent(
|
||||
agent_name="Market-Research-Specialist",
|
||||
agent_description="Expert in market research, trend analysis, and competitive intelligence",
|
||||
system_prompt="""You are a senior market research specialist with expertise in:
|
||||
- Market trend analysis and forecasting
|
||||
- Competitive landscape assessment
|
||||
- Consumer behavior analysis
|
||||
- Industry report generation""",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
financial_analyst_agent = Agent(
|
||||
agent_name="Financial-Analyst",
|
||||
agent_description="Specialist in financial statement analysis and valuation",
|
||||
system_prompt="""You are a senior financial analyst with deep expertise in:
|
||||
- Financial statement analysis
|
||||
- Valuation methodologies
|
||||
- Investment research and due diligence
|
||||
- Risk assessment and portfolio analysis""",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
compliance_agent = Agent(
|
||||
agent_name="Compliance-Officer",
|
||||
agent_description="Expert in regulatory compliance and risk management",
|
||||
system_prompt="""You are a compliance officer with expertise in:
|
||||
- Regulatory compliance verification
|
||||
- Risk identification and mitigation
|
||||
- Legal requirement assessment
|
||||
- Audit preparation""",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
# Initialize the circular swarm
|
||||
financial_swarm = CircularSwarm(
|
||||
name="Financial-Analysis-Circular-Swarm",
|
||||
description="A circular swarm for comprehensive financial analysis",
|
||||
agents=[market_research_agent, financial_analyst_agent, compliance_agent],
|
||||
output_type="dict",
|
||||
)
|
||||
|
||||
# Execute financial analysis
|
||||
tasks = [
|
||||
"Conduct a comprehensive analysis of Tesla (TSLA) stock",
|
||||
"Evaluate market position and financial health",
|
||||
"Assess regulatory compliance and investment risks"
|
||||
]
|
||||
|
||||
result = financial_swarm.run(tasks=tasks)
|
||||
print(result)
|
||||
```
|
||||
|
||||
### Content Creation Workflow
|
||||
|
||||
```python
|
||||
from swarms import Agent
|
||||
from swarms.structs.swarming_architectures import circular_swarm
|
||||
|
||||
# Create content creation agents
|
||||
researcher = Agent(
|
||||
agent_name="Researcher",
|
||||
system_prompt="You are a research specialist. Gather comprehensive information on topics.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
writer = Agent(
|
||||
agent_name="Writer",
|
||||
system_prompt="You are a technical writer. Create clear, engaging content based on research.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
editor = Agent(
|
||||
agent_name="Editor",
|
||||
system_prompt="You are an editor. Review and refine content for clarity, grammar, and style.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
fact_checker = Agent(
|
||||
agent_name="Fact-Checker",
|
||||
system_prompt="You are a fact-checker. Verify the accuracy of information and claims.",
|
||||
model_name="gpt-4o-mini",
|
||||
)
|
||||
|
||||
# Execute circular swarm
|
||||
agents = [researcher, writer, editor, fact_checker]
|
||||
tasks = [
|
||||
"Create an article about the future of AI",
|
||||
"Write a blog post on sustainable technology",
|
||||
"Develop content for a product launch"
|
||||
]
|
||||
|
||||
result = circular_swarm(agents, tasks, output_type="dict")
|
||||
```
|
||||
|
||||
## Best Practices
|
||||
|
||||
| Best Practice | Description |
|
||||
|------------------------------|--------------------------------------------------------------------------------------------------|
|
||||
| **Agent Specialization** | Create agents with specific, well-defined expertise areas |
|
||||
| **Clear Task Descriptions** | Provide detailed, actionable task descriptions |
|
||||
| **Appropriate Agent Count** | Balance between thoroughness and performance (3-5 agents is often optimal) |
|
||||
| **Context Preservation** | Leverage the built-in conversation history for continuity |
|
||||
| **Error Handling** | Implement proper error handling for production use |
|
||||
| **Output Format Selection** | Choose the output format that best suits your downstream processing needs |
|
||||
|
||||
## Comparison with Other Swarm Types
|
||||
|
||||
| Swarm Type | Processing Pattern | Best For |
|
||||
|------------|-------------------|----------|
|
||||
| **Circular Swarm** | Each agent processes each task in sequence | Round-robin review, iterative refinement |
|
||||
| **Star Swarm** | Central agent coordinates, others process | Centralized coordination |
|
||||
| **Mesh Swarm** | Random task distribution from queue | Load balancing, parallel processing |
|
||||
| **Sequential Workflow** | Linear chain, output feeds next input | Pipeline processing, dependencies |
|
||||
| **Concurrent Workflow** | All agents process simultaneously | Parallel execution, independent tasks |
|
||||
|
||||
## Performance Considerations
|
||||
|
||||
- **Agent Count**: More agents increase processing time (each task goes through all agents)
|
||||
- **Task Count**: More tasks multiply the total processing time
|
||||
- **Model Selection**: Choose appropriate models for your use case and budget
|
||||
- **Context Size**: Conversation history grows with each agent, which may affect token usage
|
||||
|
||||
## Error Handling
|
||||
|
||||
The `CircularSwarm` includes error handling with validation. Common issues and solutions:
|
||||
|
||||
- **No Agents**: Ensure at least one agent is provided
|
||||
- **Empty Tasks**: Verify that the tasks list is not empty
|
||||
- **Model Issues**: Check that all agents have valid model configurations
|
||||
- **Output Format**: Ensure the output_type is one of the supported formats
|
||||
|
||||
## Summary
|
||||
|
||||
The `CircularSwarm` provides a simple yet powerful pattern for ensuring every agent processes every task in a predictable, ordered manner. It's ideal for workflows that require comprehensive review, iterative refinement, or quality assurance processes where each task must pass through all agents in sequence.
|
||||
|
||||
Loading…
Reference in new issue