[DOCS][CLEANUP]

pull/572/head
Kye Gomez 5 months ago
parent 0220190874
commit 03789cce1e

@ -27,9 +27,9 @@ Here you'll find references about the Swarms framework, marketplace, community,
| Section | Links | | Section | Links |
|----------------------|--------------------------------------------------------------------------------------------| |----------------------|--------------------------------------------------------------------------------------------|
| Swarms Platform Github | [Swarms Platform GitHub](https://github.com/kyegomez/swarms-platform) | | Swarms Platform Github | [Swarms Platform GitHub](https://github.com/kyegomez/swarms-platform) |
| Swarms Python Framework Github | [Swarms Platform GitHub](https://github.com/kyegomez/swarms) | | Swarms Python Framework Github | [Swarms GitHub](https://github.com/kyegomez/swarms) |
| Swarms Memory Python Framework | [Swarms Platform GitHub](https://github.com/The-Swarm-Corporation/swarms-memory) | | Swarms Memory Python Framework | [Swarms Memory GitHub](https://github.com/The-Swarm-Corporation/swarms-memory) |
| Swarms Corp Github Profile | [Swarms Platform GitHub](https://github.com/The-Swarm-Corporation) | | Swarms Corp Github Profile | [Swarms Corp GitHub](https://github.com/The-Swarm-Corporation) |
## Get Support ## Get Support

@ -269,3 +269,65 @@ tasks = [
responses = agent.bulk_run(tasks) responses = agent.bulk_run(tasks)
print(responses) print(responses)
``` ```
### Various other settings
```python
# # Convert the agent object to a dictionary
print(agent.to_dict())
print(agent.to_toml())
print(agent.model_dump_json())
print(agent.model_dump_yaml())
# Ingest documents into the agent's knowledge base
agent.ingest_docs("your_pdf_path.pdf")
# Receive a message from a user and process it
agent.receive_message(name="agent_name", message="message")
# Send a message from the agent to a user
agent.send_agent_message(agent_name="agent_name", message="message")
# Ingest multiple documents into the agent's knowledge base
agent.ingest_docs("your_pdf_path.pdf", "your_csv_path.csv")
# Run the agent with a filtered system prompt
agent.filtered_run(
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?"
)
# Run the agent with multiple system prompts
agent.bulk_run(
[
"How can I establish a ROTH IRA to buy stocks and get a tax break? What are the criteria?",
"Another system prompt",
]
)
# Add a memory to the agent
agent.add_memory("Add a memory to the agent")
# Check the number of available tokens for the agent
agent.check_available_tokens()
# Perform token checks for the agent
agent.tokens_checks()
# Print the dashboard of the agent
agent.print_dashboard()
# Print the history and memory of the agent
agent.print_history_and_memory()
# Fetch all the documents from the doc folders
agent.get_docs_from_doc_folders()
# Activate agent ops
agent.activate_agentops()
agent.check_end_session_agentops()
# Dump the model to a JSON file
agent.model_dump_json()
print(agent.to_toml())
```

@ -2014,8 +2014,8 @@ class Agent:
f"Model saved to {self.workspace_dir}/{self.agent_name}.yaml" f"Model saved to {self.workspace_dir}/{self.agent_name}.yaml"
) )
def publish_agent_to_marketplace(self): # def publish_agent_to_marketplace(self):
import requests # import requests
# Prepare the data # # Prepare the data
Loading…
Cancel
Save