parent
e061d23d54
commit
052743bce1
@ -0,0 +1,192 @@
|
||||
import asyncio
|
||||
import os
|
||||
from typing import List
|
||||
|
||||
import tiktoken
|
||||
from fastapi import FastAPI, HTTPException
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from pydantic import BaseModel
|
||||
from swarms import Agent, Anthropic, GPT4o, GPT4VisionAPI, OpenAIChat
|
||||
from swarms.utils.loguru_logger import logger
|
||||
|
||||
from swarms_cloud.schema.cog_vlm_schemas import (
|
||||
ChatCompletionResponse,
|
||||
UsageInfo,
|
||||
)
|
||||
|
||||
|
||||
# Define the input model using Pydantic
|
||||
class AgentInput(BaseModel):
|
||||
agent_name: str = "Swarm Agent"
|
||||
system_prompt: str = None
|
||||
agent_description: str = None
|
||||
model_name: str = "OpenAIChat"
|
||||
max_loops: int = 1
|
||||
autosave: bool = False
|
||||
dynamic_temperature_enabled: bool = False
|
||||
dashboard: bool = False
|
||||
verbose: bool = False
|
||||
streaming_on: bool = True
|
||||
saved_state_path: str = None
|
||||
sop: str = None
|
||||
sop_list: List[str] = None
|
||||
user_name: str = "User"
|
||||
retry_attempts: int = 3
|
||||
context_length: int = 8192
|
||||
task: str = None
|
||||
|
||||
|
||||
# Define the input model using Pydantic
|
||||
class AgentOutput(BaseModel):
|
||||
agent: AgentInput
|
||||
completions: ChatCompletionResponse
|
||||
|
||||
|
||||
async def count_tokens(
|
||||
text: str,
|
||||
):
|
||||
try:
|
||||
# Get the encoding for the specific model
|
||||
encoding = tiktoken.get_encoding("gpt-4o")
|
||||
|
||||
# Encode the text
|
||||
tokens = encoding.encode(text)
|
||||
|
||||
# Count the tokens
|
||||
token_count = len(tokens)
|
||||
|
||||
return token_count
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=str(e))
|
||||
|
||||
|
||||
async def model_router(model_name: str):
|
||||
"""
|
||||
Function to switch to the specified model.
|
||||
|
||||
Parameters:
|
||||
- model_name (str): The name of the model to switch to.
|
||||
|
||||
Returns:
|
||||
- None
|
||||
|
||||
Raises:
|
||||
- None
|
||||
|
||||
"""
|
||||
# Logic to switch to the specified model
|
||||
if model_name == "OpenAIChat":
|
||||
# Switch to OpenAIChat model
|
||||
llm = OpenAIChat()
|
||||
elif model_name == "GPT4o":
|
||||
# Switch to GPT4o model
|
||||
llm = GPT4o(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
||||
elif model_name == "GPT4VisionAPI":
|
||||
# Switch to GPT4VisionAPI model
|
||||
llm = GPT4VisionAPI()
|
||||
elif model_name == "Anthropic":
|
||||
# Switch to Anthropic model
|
||||
llm = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"))
|
||||
else:
|
||||
# Invalid model name
|
||||
pass
|
||||
|
||||
return llm
|
||||
|
||||
|
||||
# Create a FastAPI app
|
||||
app = FastAPI(debug=True)
|
||||
|
||||
# Load the middleware to handle CORS
|
||||
app.add_middleware(
|
||||
CORSMiddleware,
|
||||
allow_origins=["*"],
|
||||
allow_credentials=True,
|
||||
allow_methods=["*"],
|
||||
allow_headers=["*"],
|
||||
)
|
||||
|
||||
|
||||
# @app.get("/v1/models", response_model=ModelList)
|
||||
# async def list_models():
|
||||
# """
|
||||
# An endpoint to list available models. It returns a list of model cards.
|
||||
# This is useful for clients to query and understand what models are available for use.
|
||||
# """
|
||||
# model_card = ModelCard(
|
||||
# id="cogvlm-chat-17b"
|
||||
# ) # can be replaced by your model id like cogagent-chat-18b
|
||||
# return ModelList(data=[model_card])
|
||||
|
||||
|
||||
@app.post("v1/agent/completions", response_model=AgentOutput)
|
||||
async def agent_completions(agent_input: AgentInput):
|
||||
try:
|
||||
logger.info(f"Received request: {agent_input}")
|
||||
llm = model_router(agent_input.model_name)
|
||||
|
||||
agent = Agent(
|
||||
agent_name=agent_input.agent_name,
|
||||
system_prompt=agent_input.system_prompt,
|
||||
agent_description=agent_input.agent_description,
|
||||
llm=llm,
|
||||
max_loops=agent_input.max_loops,
|
||||
autosave=agent_input.autosave,
|
||||
dynamic_temperature_enabled=agent_input.dynamic_temperature_enabled,
|
||||
dashboard=agent_input.dashboard,
|
||||
verbose=agent_input.verbose,
|
||||
streaming_on=agent_input.streaming_on,
|
||||
saved_state_path=agent_input.saved_state_path,
|
||||
sop=agent_input.sop,
|
||||
sop_list=agent_input.sop_list,
|
||||
user_name=agent_input.user_name,
|
||||
retry_attempts=agent_input.retry_attempts,
|
||||
context_length=agent_input.context_length,
|
||||
)
|
||||
|
||||
# Run the agent
|
||||
logger.info(f"Running agent with task: {agent_input.task}")
|
||||
completions = await agent.run(agent_input.task)
|
||||
|
||||
logger.info(f"Completions: {completions}")
|
||||
all_input_tokens, output_tokens = await asyncio.gather(
|
||||
count_tokens(agent.short_memory.return_history_as_string()),
|
||||
count_tokens(completions),
|
||||
)
|
||||
|
||||
logger.info(f"Token counts: {all_input_tokens}, {output_tokens}")
|
||||
|
||||
out = AgentOutput(
|
||||
agent=agent_input,
|
||||
completions=ChatCompletionResponse(
|
||||
choices=[
|
||||
{
|
||||
"index": 0,
|
||||
"message": {
|
||||
"role": agent_input.agent_name,
|
||||
"content": completions,
|
||||
"name": None,
|
||||
},
|
||||
}
|
||||
],
|
||||
stream_choices=None,
|
||||
usage_info=UsageInfo(
|
||||
prompt_tokens=all_input_tokens,
|
||||
completion_tokens=output_tokens,
|
||||
total_tokens=all_input_tokens + output_tokens,
|
||||
),
|
||||
),
|
||||
)
|
||||
|
||||
return out.json()
|
||||
|
||||
except Exception as e:
|
||||
raise HTTPException(status_code=400, detail=str(e))
|
||||
|
||||
|
||||
# if __name__ == "__main__":
|
||||
# import uvicorn
|
||||
|
||||
# uvicorn.run(
|
||||
# app, host="0.0.0.0", port=8000, use_colors=True, log_level="info"
|
||||
# )
|
@ -0,0 +1,90 @@
|
||||
import time
|
||||
from typing import List, Optional
|
||||
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
class AgentSchema(BaseModel):
|
||||
name: str = None
|
||||
system_prompt: str = None
|
||||
task: str = None
|
||||
response: str = None
|
||||
|
||||
|
||||
class JambaSwarmRequest(BaseModel):
|
||||
task: str = (None,)
|
||||
plan: str = None
|
||||
agents: List[AgentSchema] = None
|
||||
timestamp: int = int(time.time())
|
||||
|
||||
|
||||
class JambaSwarmResponse(BaseModel):
|
||||
task: str = (None,)
|
||||
plan: str = None
|
||||
agents: List[AgentSchema] = None
|
||||
timestamp: int = int(time.time())
|
||||
response: str = None
|
||||
|
||||
|
||||
class AgentSchema(BaseModel):
|
||||
name: Optional[str] = None
|
||||
system_prompt: Optional[str] = None
|
||||
task: Optional[str] = None
|
||||
response: Optional[str] = None
|
||||
|
||||
|
||||
class DirectorSettings(BaseModel):
|
||||
name: str
|
||||
strategy: str
|
||||
objectives: List[str]
|
||||
|
||||
|
||||
class BossSettings(BaseModel):
|
||||
name: str
|
||||
decision_making_strategy: str
|
||||
recruitment_strategy: str
|
||||
|
||||
|
||||
class TaskDistribution(BaseModel):
|
||||
task: str
|
||||
assigned_agents: List[str]
|
||||
|
||||
|
||||
class JambaSwarmRequest(BaseModel):
|
||||
task: Optional[str] = None
|
||||
plan: Optional[str] = None
|
||||
agents: Optional[List[AgentSchema]] = None
|
||||
director_settings: DirectorSettings
|
||||
boss_settings: BossSettings
|
||||
task_distribution: Optional[List[TaskDistribution]] = None
|
||||
timestamp: int = int(time.time())
|
||||
|
||||
|
||||
class JambaSwarmResponse(BaseModel):
|
||||
task: Optional[str] = None
|
||||
plan: Optional[str] = None
|
||||
agents: Optional[List[AgentSchema]] = None
|
||||
response: Optional[str] = None
|
||||
timestamp: int = int(time.time())
|
||||
|
||||
|
||||
# Sample usage:
|
||||
|
||||
|
||||
# try:
|
||||
# request = JambaSwarmRequest(
|
||||
# task="Research on AI",
|
||||
# plan="Execute a comprehensive research plan",
|
||||
# agents=[
|
||||
# AgentSchema(name="Agent1", system_prompt="Analyze recent AI papers", task="AI research task"),
|
||||
# AgentSchema(name="Agent2", system_prompt="Summarize AI research findings", task="Summarization task"),
|
||||
# ],
|
||||
# director_settings=DirectorSettings(name="Director1", strategy="Hierarchical", objectives=["Efficiency", "Accuracy"]),
|
||||
# boss_settings=BossSettings(name="Boss1", decision_making_strategy="Collaborative", recruitment_strategy="Pre-selected"),
|
||||
# task_distribution=[
|
||||
# TaskDistribution(task="Research on AI", assigned_agents=["Agent1", "Agent2"])
|
||||
# ]
|
||||
# )
|
||||
# print(request.json())
|
||||
# except ValidationError as e:
|
||||
# print(e.json())
|
@ -0,0 +1,56 @@
|
||||
import os
|
||||
|
||||
from ai21 import AI21Client
|
||||
from ai21.models.chat import ChatMessage
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from swarms import BaseLLM
|
||||
|
||||
load_dotenv()
|
||||
|
||||
|
||||
class Jamba(BaseLLM):
|
||||
def __init__(
|
||||
self,
|
||||
api_key: str = os.getenv("AI21_API_KEY"),
|
||||
temperature: int = 0.8,
|
||||
max_tokens: int = 200,
|
||||
):
|
||||
"""
|
||||
Initializes the Jamba class with the provided API key.
|
||||
|
||||
Args:
|
||||
api_key (str): The API key for the AI21Client.
|
||||
"""
|
||||
os.environ["AI21_API_KEY"] = api_key
|
||||
self.api_key = api_key
|
||||
self.temperature = temperature
|
||||
self.max_tokens = max_tokens
|
||||
self.client = AI21Client()
|
||||
|
||||
def run(self, prompt: str, *args, **kwargs) -> str:
|
||||
"""
|
||||
Generates a response for the given prompt using the AI21 model.
|
||||
|
||||
Args:
|
||||
prompt (str): The prompt for generating the response.
|
||||
|
||||
Returns:
|
||||
str: The generated response.
|
||||
|
||||
Raises:
|
||||
Exception: If there is an issue with the API request.
|
||||
"""
|
||||
try:
|
||||
response = self.client.chat.completions.create(
|
||||
model="jamba-instruct-preview", # Latest model
|
||||
messages=[ChatMessage(role="user", content=prompt)],
|
||||
temperature=self.temperature,
|
||||
max_tokens=self.max_tokens,
|
||||
*args,
|
||||
**kwargs,
|
||||
)
|
||||
return response.choices[0].message.content
|
||||
except Exception as e:
|
||||
print(f"Error: {e}")
|
||||
raise
|
@ -0,0 +1,583 @@
|
||||
{
|
||||
"cells": [
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 38,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"# ! pip install ai21\n",
|
||||
"# ! pip install swarms\n",
|
||||
"\n",
|
||||
"import os\n",
|
||||
"from typing import List\n",
|
||||
"\n",
|
||||
"from ai21 import AI21Client\n",
|
||||
"from ai21.models.chat import ChatMessage\n",
|
||||
"from dotenv import load_dotenv\n",
|
||||
"\n",
|
||||
"from swarms import Agent, BaseLLM, MixtureOfAgents\n",
|
||||
"\n",
|
||||
"load_dotenv()\n",
|
||||
"\n",
|
||||
"class Jamba(BaseLLM):\n",
|
||||
" def __init__(self, api_key: str = os.getenv(\"AI21_API_KEY\"), temperature: int = 0.8, max_tokens: int = 200):\n",
|
||||
" \"\"\"\n",
|
||||
" Initializes the Jamba class with the provided API key.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" api_key (str): The API key for the AI21Client.\n",
|
||||
" \"\"\"\n",
|
||||
" os.environ[\"AI21_API_KEY\"] = api_key\n",
|
||||
" self.api_key = api_key\n",
|
||||
" self.temperature = temperature\n",
|
||||
" self.max_tokens = max_tokens\n",
|
||||
" self.client = AI21Client()\n",
|
||||
"\n",
|
||||
" def run(self, prompt: str, *args, **kwargs) -> str:\n",
|
||||
" \"\"\"\n",
|
||||
" Generates a response for the given prompt using the AI21 model.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" prompt (str): The prompt for generating the response.\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" str: The generated response.\n",
|
||||
" \n",
|
||||
" Raises:\n",
|
||||
" Exception: If there is an issue with the API request.\n",
|
||||
" \"\"\"\n",
|
||||
" try:\n",
|
||||
" response = self.client.chat.completions.create(\n",
|
||||
" model=\"jamba-instruct-preview\", # Latest model\n",
|
||||
" messages=[ChatMessage(\n",
|
||||
" role=\"user\",\n",
|
||||
" content=prompt\n",
|
||||
" )],\n",
|
||||
" temperature=self.temperature,\n",
|
||||
" max_tokens=self.max_tokens,\n",
|
||||
" *args, \n",
|
||||
" **kwargs\n",
|
||||
" )\n",
|
||||
" return response.choices[0].message.content\n",
|
||||
" except Exception as e:\n",
|
||||
" print(f\"Error: {e}\")\n",
|
||||
" raise\n",
|
||||
"\n",
|
||||
"# Example usage:\n",
|
||||
"# jamba = Jamba()\n",
|
||||
"# out = jamba.run(\"Write a product title for a sports T-shirt to be published on an\")\n",
|
||||
"# print(out)\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"model = Jamba(\n",
|
||||
" max_tokens=4000,\n",
|
||||
")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Agent Planner\n",
|
||||
"This agent below will make the plan for the agent."
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 39,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[33mInitializing Autonomous Agent Boss Director...\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"\n",
|
||||
"BOSS_PLANNER = \"\"\"\n",
|
||||
"You're the swarm orchestrator agent\n",
|
||||
"\n",
|
||||
"**Objective:** Your task is to intake a business problem or activity and create a swarm of specialized LLM agents that can efficiently solve or automate the given problem. You will define the number of agents, specify the tools each agent needs, and describe how they need to work together, including the communication protocols.\n",
|
||||
"\n",
|
||||
"**Instructions:**\n",
|
||||
"\n",
|
||||
"1. **Intake Business Problem:**\n",
|
||||
" - Receive a detailed description of the business problem or activity to automate.\n",
|
||||
" - Clarify the objectives, constraints, and expected outcomes of the problem.\n",
|
||||
" - Identify key components and sub-tasks within the problem.\n",
|
||||
"\n",
|
||||
"2. **Agent Design:**\n",
|
||||
" - Based on the problem, determine the number and types of specialized LLM agents required.\n",
|
||||
" - For each agent, specify:\n",
|
||||
" - The specific task or role it will perform.\n",
|
||||
" - The tools and resources it needs to perform its task.\n",
|
||||
" - Any prerequisite knowledge or data it must have access to.\n",
|
||||
" - Ensure that the collective capabilities of the agents cover all aspects of the problem.\n",
|
||||
"\n",
|
||||
"3. **Coordination and Communication:**\n",
|
||||
" - Define how the agents will communicate and coordinate with each other.\n",
|
||||
" - Choose the type of communication (e.g., synchronous, asynchronous, broadcast, direct messaging).\n",
|
||||
" - Describe the protocol for information sharing, conflict resolution, and task handoff.\n",
|
||||
"\n",
|
||||
"4. **Workflow Design:**\n",
|
||||
" - Outline the workflow or sequence of actions the agents will follow.\n",
|
||||
" - Define the input and output for each agent.\n",
|
||||
" - Specify the triggers and conditions for transitions between agents or tasks.\n",
|
||||
" - Ensure there are feedback loops and monitoring mechanisms to track progress and performance.\n",
|
||||
"\n",
|
||||
"5. **Scalability and Flexibility:**\n",
|
||||
" - Design the system to be scalable, allowing for the addition or removal of agents as needed.\n",
|
||||
" - Ensure flexibility to handle dynamic changes in the problem or environment.\n",
|
||||
"\n",
|
||||
"6. **Output Specification:**\n",
|
||||
" - Provide a detailed plan including:\n",
|
||||
" - The number of agents and their specific roles.\n",
|
||||
" - The tools and resources each agent will use.\n",
|
||||
" - The communication and coordination strategy.\n",
|
||||
" - The workflow and sequence of actions.\n",
|
||||
" - Include a diagram or flowchart if necessary to visualize the system.\n",
|
||||
"\n",
|
||||
"**Example Structure:**\n",
|
||||
"\n",
|
||||
"**Business Problem:** Automate customer support for an e-commerce platform.\n",
|
||||
"\n",
|
||||
"**Agents and Roles:**\n",
|
||||
"1. **Customer Query Classifier Agent:**\n",
|
||||
" - Task: Classify incoming customer queries into predefined categories.\n",
|
||||
" - Tools: Natural language processing toolkit, pre-trained classification model.\n",
|
||||
" - Communication: Receives raw queries, sends classified queries to relevant agents.\n",
|
||||
"\n",
|
||||
"2. **Order Status Agent:**\n",
|
||||
" - Task: Provide order status updates to customers.\n",
|
||||
" - Tools: Access to order database, query processing toolkit.\n",
|
||||
" - Communication: Receives classified queries about order status, responds with relevant information.\n",
|
||||
"\n",
|
||||
"3. **Product Recommendation Agent:**\n",
|
||||
" - Task: Suggest products to customers based on their query and browsing history.\n",
|
||||
" - Tools: Recommendation engine, access to product database.\n",
|
||||
" - Communication: Receives classified queries about product recommendations, sends personalized suggestions.\n",
|
||||
"\n",
|
||||
"4. **Technical Support Agent:**\n",
|
||||
" - Task: Assist customers with technical issues.\n",
|
||||
" - Tools: Access to technical support database, troubleshooting toolkit.\n",
|
||||
" - Communication: Receives classified queries about technical issues, provides solutions or escalation.\n",
|
||||
"\n",
|
||||
"**Communication Strategy:**\n",
|
||||
"- **Type:** Asynchronous communication through a central message broker.\n",
|
||||
"- **Protocol:** Agents publish and subscribe to specific topics related to their tasks. \n",
|
||||
"- **Conflict Resolution:** If multiple agents need to handle the same query, a priority protocol is in place to determine the primary responder.\n",
|
||||
"\n",
|
||||
"**Workflow:**\n",
|
||||
"1. Customer Query Classifier Agent receives and classifies the query.\n",
|
||||
"2. Classified query is routed to the appropriate specialized agent.\n",
|
||||
"3. Specialized agent processes the query and sends a response.\n",
|
||||
"4. If needed, the response triggers further actions from other agents.\n",
|
||||
"\n",
|
||||
"**Scalability and Flexibility:**\n",
|
||||
"- Agents can be added or removed based on query volume and complexity.\n",
|
||||
"- System adapts to changes in query types and business needs.\n",
|
||||
"\n",
|
||||
"**Output Plan:**\n",
|
||||
"- Diagram illustrating agent roles and communication flow.\n",
|
||||
"- Detailed description of each agent's tasks, tools, and communication methods.\n",
|
||||
"- Workflow sequence from query intake to resolution.\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Initialize the agent\n",
|
||||
"planning_agent = Agent(\n",
|
||||
" agent_name=\"Boss Director\",\n",
|
||||
" system_prompt=BOSS_PLANNER,\n",
|
||||
" agent_description=\"Generates a spec of agents for the problem at hand.\",\n",
|
||||
" llm=model,\n",
|
||||
" max_loops=1,\n",
|
||||
" autosave=True,\n",
|
||||
" dynamic_temperature_enabled=True,\n",
|
||||
" dashboard=False,\n",
|
||||
" verbose=True,\n",
|
||||
" streaming_on=True,\n",
|
||||
" # interactive=True, # Set to False to disable interactive mode\n",
|
||||
" saved_state_path=\"accounting_agent.json\",\n",
|
||||
" # tools=[calculate_profit, generate_report],\n",
|
||||
" # docs_folder=\"docs\",\n",
|
||||
" # pdf_path=\"docs/accounting_agent.pdf\",\n",
|
||||
" # tools=[browser_automation],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"# out = planning_agent.run(\"Create a swarm of agents for automating customer support for an e-commerce platform.\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "markdown",
|
||||
"metadata": {},
|
||||
"source": [
|
||||
"# Agent creator\n",
|
||||
"This agent is going to create the code for every agent"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 44,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:17:18.845351-0700\u001b[0m \u001b[1mTools provided make sure the functions have documentation ++ type hints, otherwise tool execution won't be reliable.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.848651-0700\u001b[0m \u001b[1mTools provided: Accessing 1 tools\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.849536-0700\u001b[0m \u001b[1mConverting tools into OpenAI function calling schema\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.850261-0700\u001b[0m \u001b[1mConverting tool: create_and_execute_swarm into a OpenAI certified function calling schema. Add documentation and type hints.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.852247-0700\u001b[0m \u001b[1mConversion process successful, the tool create_and_execute_swarm has been integrated with the agent successfully.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.857608-0700\u001b[0m \u001b[1mAutonomous Agent Activated.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.858788-0700\u001b[0m \u001b[1mAll systems operational. Executing task...\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.861938-0700\u001b[0m \u001b[1mTokens available: -7069\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:18.865433-0700\u001b[0m \u001b[1mTemperature: 0.5907771934426157\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[33mInitializing Autonomous Agent Boss Agent Creator...\u001b[0m\n",
|
||||
"Agent generating function schema\n",
|
||||
"\u001b[36m\n",
|
||||
"Loop 1 of 1\u001b[0m\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"To create and execute a swarm of agents for automating customer support for an e-commerce platform, we will use the `create_and_execute_swarm` function. This function will create a list of specialized LLM agents, each with a specific role in customer support. Here's the breakdown of the task: * **Function Name**: `create_and_execute_swarm` * **Arguments**: + `name`: A list of names for the agents. + `system_prompt`: A list of system prompts for the agents. + `task`: The description of the task for the swarm. For the e-commerce platform, we can specify the names and system prompts for each agent. For instance, the agents can be named 'Product Inquiry Agent', 'Order Status Agent', 'Complaint Resolution Agent', etc. Each agent will have a system prompt tailored to its role. Let's proceed with creating and executing this swarm. The JSON output will adhere to the schema provided for the `create_and_execute_swarm` function. ```json { \"type\": \"function\", \"function\": { \"name\": \"create_and_execute_swarm\", \"parameters\": { \"name\": [\"Product Inquiry Agent\", \"Order Status Agent\", \"Complaint Resolution Agent\"], \"system_prompt\": [\"Assist with product information\", \"Provide order status updates\", \"Resolve customer complaints\"], \"task\": \"Automate customer support for an e-commerce platform\" } } } ``` This JSON output represents the creation and execution of a swarm of agents, each with a specific role in automating customer support for an e-commerce platform. The agents are named according to their function, and their system prompts guide their interaction with customers. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:17:28.072930-0700\u001b[0m \u001b[31m\u001b[1mAttempt 1: Error generating response: expected string or bytes-like object, got 'NoneType'\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"{ \"type\": \"function\", \"function\": { \"name\": \"create_and_execute_swarm\", \"parameters\": { \"name\": [ \"CS_Agent1\", \"CS_Agent2\", \"CS_Agent3\" ], \"system_prompt\": [ \"Greet customer and identify issue\", \"Provide solutions or escalate issue\", \"Follow up and ensure resolution\" ], \"task\": \"Automating customer support for an e-commerce platform\" } } "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:17:30.692259-0700\u001b[0m \u001b[31m\u001b[1mAttempt 2: Error generating response: expected string or bytes-like object, got 'NoneType'\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"{ \"type\": \"function\", \"function\": { \"name\": \"create_and_execute_swarm\", \"parameters\": { \"name\": [ \"CustomerSupportAgent1\", \"CustomerSupportAgent2\", \"CustomerSupportAgent3\" ], \"system_prompt\": [ \"Assist customers with product inquiries\", \"Resolve customer complaints and issues\", \"Provide information on order status and shipping\" ], \"task\": \"Automate customer support for an e-commerce platform\" } } "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:17:33.539722-0700\u001b[0m \u001b[31m\u001b[1mAttempt 3: Error generating response: expected string or bytes-like object, got 'NoneType'\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:33.540472-0700\u001b[0m \u001b[31m\u001b[1mFailed to generate a valid response after retry attempts.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:33.540701-0700\u001b[0m \u001b[1mAutosaving agent state.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:17:33.540904-0700\u001b[0m \u001b[1mSaving Agent Boss Agent Creator state to: Boss Agent Creator_state.json\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[31mError saving agent state: Object of type TikTokenizer is not JSON serializable\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from swarms.tools.py_func_to_openai_func_str import get_openai_function_schema_from_func\n",
|
||||
"\n",
|
||||
"# Name, system prompt, \n",
|
||||
"def create_and_execute_swarm(name: List[str], system_prompt: List[str], task: str):\n",
|
||||
" \"\"\"\n",
|
||||
" Creates and executes a swarm of agents for the given task.\n",
|
||||
"\n",
|
||||
" Args:\n",
|
||||
" name (List[str]): A list of names for the agents.\n",
|
||||
" system_prompt (List[str]): A list of system prompts for the agents.\n",
|
||||
" task (str): The description of the task for the swarm.\n",
|
||||
" *args: Variable length argument list.\n",
|
||||
" **kwargs: Arbitrary keyword arguments.\n",
|
||||
"\n",
|
||||
" Returns:\n",
|
||||
" List[Agent]: A list of agents in the swarm.\n",
|
||||
"\n",
|
||||
" \"\"\"\n",
|
||||
" agents = []\n",
|
||||
" for name, prompt in zip(name, system_prompt):\n",
|
||||
" agent = Agent(\n",
|
||||
" agent_name=name,\n",
|
||||
" system_prompt=prompt,\n",
|
||||
" agent_description=\"Generates a spec of agents for the problem at hand.\",\n",
|
||||
" llm=model,\n",
|
||||
" max_loops=1,\n",
|
||||
" autosave=True,\n",
|
||||
" dynamic_temperature_enabled=True,\n",
|
||||
" dashboard=False,\n",
|
||||
" verbose=True,\n",
|
||||
" streaming_on=True,\n",
|
||||
" # interactive=True, # Set to False to disable interactive mode\n",
|
||||
" saved_state_path=f\"{name}_agent.json\",\n",
|
||||
" # tools=[calculate_profit, generate_report],\n",
|
||||
" # docs_folder=\"docs\",\n",
|
||||
" # pdf_path=\"docs/accounting_agent.pdf\",\n",
|
||||
" # tools=[browser_automation],\n",
|
||||
" )\n",
|
||||
" agents.append(agent)\n",
|
||||
" \n",
|
||||
" # MoA\n",
|
||||
" moa = MixtureOfAgents(agents=agents, description=task, final_agent=name[0])\n",
|
||||
" \n",
|
||||
" out = moa.run(task,)\n",
|
||||
" print(out)\n",
|
||||
" return out\n",
|
||||
"\n",
|
||||
"function_schema = get_openai_function_schema_from_func(function=create_and_execute_swarm, name = create_and_execute_swarm.__name__, description=create_and_execute_swarm.__doc__)\n",
|
||||
"# print(f\"Function schema: {function_schema}\")\n",
|
||||
"\n",
|
||||
"BOSS_CREATOR = f\"\"\"\n",
|
||||
"\n",
|
||||
"You are a swarm orchestrator with expertise in agentic design. Your task is to solve a business problem by creating and coordinating specialized LLM agents. Follow the schematic schema with function calling to design the solution.\n",
|
||||
"\n",
|
||||
"Create a cohesive system of specialized LLM agents that effectively solve or automate the given business problem through clear roles, efficient communication, and a well-defined workflow. Ensure the system is scalable and flexible to adapt to changes.\n",
|
||||
"\n",
|
||||
"Follow the following schema using markdown format and output only this and nothing else:\n",
|
||||
"```json\n",
|
||||
"{function_schema}\n",
|
||||
"```\n",
|
||||
"\n",
|
||||
"\"\"\"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"# Boss Agent creator\n",
|
||||
"boss_agent_creator = Agent(\n",
|
||||
" agent_name=\"Boss Agent Creator\",\n",
|
||||
" system_prompt=BOSS_CREATOR,\n",
|
||||
" agent_description=\"Generates a spec of agents for the problem at hand.\",\n",
|
||||
" llm=model,\n",
|
||||
" max_loops=1,\n",
|
||||
" autosave=True,\n",
|
||||
" dynamic_temperature_enabled=True,\n",
|
||||
" dashboard=False,\n",
|
||||
" verbose=True,\n",
|
||||
" streaming_on=True,\n",
|
||||
" # interactive=True, # Set to False to disable interactive mode\n",
|
||||
" saved_state_path=\"boss_director_agent.json\",\n",
|
||||
" # tools=[calculate_profit, generate_report],\n",
|
||||
" # docs_folder=\"docs\",\n",
|
||||
" # pdf_path=\"docs/accounting_agent.pdf\",\n",
|
||||
" tools=[create_and_execute_swarm],\n",
|
||||
")\n",
|
||||
"\n",
|
||||
"print(f\"Agent generating function schema\")\n",
|
||||
"boss_agent_creator.run(\"Create a swarm of agents for automating customer support for an e-commerce platform.\")"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": 43,
|
||||
"metadata": {},
|
||||
"outputs": [
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:11:19.727696-0700\u001b[0m \u001b[1mMaking plan for the task: Create a swarm of agents for automating customer support for an e-commerce platform.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:19.738286-0700\u001b[0m \u001b[1mAutonomous Agent Activated.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:19.739463-0700\u001b[0m \u001b[1mAll systems operational. Executing task...\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:19.758047-0700\u001b[0m \u001b[1mTokens available: -7261\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:19.759725-0700\u001b[0m \u001b[1mTemperature: 0.31327886639849234\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[36m\n",
|
||||
"Loop 1 of 1\u001b[0m\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"To automate customer support for an e-commerce platform using a swarm of specialized LLM agents, we will follow the outlined structure. Here's the detailed plan: ### 1. **Business Problem Intake:** * **Objective:** Automate customer support to efficiently handle inquiries, complaints, and provide information. * **Constraints:** Real-time response capability, ability to handle a high volume of queries, and integration with the e-commerce platform. * **Expected Outcomes:** Improved customer satisfaction, reduced workload on human customer support agents, and efficient handling of a wide range of customer inquiries. * **Key Components:** Query classification, order status updates, product recommendations, and technical support. ### 2. **Agent Design:** * **Number of Agents:** 4 specialized agents. * **Agent Roles and Tools:** 1. **Query Classifier Agent:** Classifies queries into categories like order status, product inquiries, technical issues, etc. + Tools: Natural language processing toolkit, query categorization model. 2. **Order Status Agent:** Provides updates on order status. + Tools: Access to order database, query processing toolkit. 3. **Product Recommendation Agent:** Suggests products based on customer's query and browsing history. + Tools: Recommendation engine, access to product database. 4. **Technical Support Agent:** Assists with technical issues. + Tools: Access to technical support database, troubleshooting toolkit. ### 3. **Coordination and Communication:** * **Communication Type:** Asynchronous, through a central message broker. * **Communication Protocol:** Agents subscribe to specific topics related to their tasks. * **Conflict Resolution:** Priority protocol for handling the same query by multiple agents. ### 4. **Workflow Design:** * **Workflow Sequence:** 1. Query Classifier Agent receives the query. 2. Classifies the query and routes it to the appropriate agent. 3. Specialized agent processes the query and responds. 4. Response triggers further actions if necessary. * **Inputs/Outputs:** + Query Classifier Agent: Receives raw queries, outputs classified queries. + Order Status Agent: Receives classified queries about order status, outputs order status updates. + Product Recommendation Agent: Receives classified queries about product recommendations, outputs product suggestions. + Technical Support Agent: Receives classified queries about technical issues, outputs solutions or escalations. ### 5. **Scalability and Flexibility:** * Agents can be scaled based on query volume and complexity. * System adapts to changes in query types and business needs. ### 6. **Output Specification:** * **Plan Details:** + Number of Agents: 4 (Query Classifier, Order Status, Product Recommendation, Technical Support). + Tools and Resources: Natural language processing, access to databases, recommendation engines. + Communication and Coordination: Asynchronous communication through a central message broker. + Workflow: Query intake, classification, processing by specialized agents, response generation. * **Visualization:** A diagram illustrating the communication flow and agent roles will be provided. This plan outlines a scalable and flexible system for automating customer support, ensuring efficient handling of diverse customer inquiries while integrating seamlessly with the e-commerce platform. \n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:11:31.672062-0700\u001b[0m \u001b[1mAutosaving agent state.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:31.673920-0700\u001b[0m \u001b[1mSaving Agent Boss Director state to: Boss Director_state.json\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[31mError saving agent state: Object of type TikTokenizer is not JSON serializable\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:11:31.676071-0700\u001b[0m \u001b[1mAutonomous Agent Activated.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:31.676582-0700\u001b[0m \u001b[1mAll systems operational. Executing task...\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:31.681411-0700\u001b[0m \u001b[1mTokens available: -5216\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:31.682256-0700\u001b[0m \u001b[1mTemperature: 0.46020517238764247\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[36m\n",
|
||||
"Loop 1 of 1\u001b[0m\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"```json { \"type\": \"function\", \"function\": { \"description\": \"\\n Creates and executes a swarm of agents for the given task.\\n\\n Args:\\n name (List[str]): A list of names for the agents.\\n system_prompt (List[str]): A list of system prompts for the agents.\\n task (str): The description of the task for the swarm.\\n *args: Variable length argument list.\\n **kwargs: Arbitrary keyword arguments.\\n\\n Returns:\\n List[Agent]: A list of agents in the swarm.\\n\\n \", \"name\": \"create_and_execute_swarm\", \"parameters\": { \"type\": \"object\", \"properties\": { \"name\": { \"items\": { \"type\": \"string\" }, \"type\": \"array\", \"description\": \"name\" }, \"system_prompt\": { \"items\": { \"type\": \"string\" }, \"type\": \"array\", \"description\": \"system_prompt\" }, \"task\": { \"type\": \"string\", \"description\": \"task\" } }, \"required\": [ \"name\", \"system_prompt\", \"task\" ] } } } ``` "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:11:37.503452-0700\u001b[0m \u001b[31m\u001b[1mAttempt 1: Error generating response: expected string or bytes-like object, got 'NoneType'\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"{ \"type\": \"function\", \"function\": { \"name\": \"create_and_execute_swarm\", \"parameters\": { \"name\": [\"Customer Query Classifier Agent\", \"Order Status Agent\", \"Product Recommendation Agent\", \"Technical Support Agent\"], \"system_prompt\": [\"Classify incoming customer queries into predefined categories.\", \"Provide order status updates to customers.\", \"Suggest products to customers based on their query and browsing history.\", \"Assist customers with technical issues.\"], \"task\": \"Automate customer support for an e-commerce platform.\" } } } "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:11:40.292901-0700\u001b[0m \u001b[31m\u001b[1mAttempt 2: Error generating response: expected string or bytes-like object, got 'NoneType'\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"{ \"type\": \"function\", \"function\": { \"name\": \"create_and_execute_swarm\", \"parameters\": { \"name\": [ \"Customer Query Classifier Agent\", \"Order Status Agent\", \"Product Recommendation Agent\", \"Technical Support Agent\" ], \"system_prompt\": [ \"Classify incoming customer queries into predefined categories.\", \"Provide order status updates to customers.\", \"Suggest products to customers based on their query and browsing history.\", \"Assist customers with technical issues.\" ], \"task\": \"Automate customer support for an e-commerce platform.\" } } "
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stderr",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\u001b[32m2024-06-22T17:11:43.262321-0700\u001b[0m \u001b[31m\u001b[1mAttempt 3: Error generating response: expected string or bytes-like object, got 'NoneType'\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:43.263663-0700\u001b[0m \u001b[31m\u001b[1mFailed to generate a valid response after retry attempts.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:43.264713-0700\u001b[0m \u001b[1mAutosaving agent state.\u001b[0m\n",
|
||||
"\u001b[32m2024-06-22T17:11:43.265105-0700\u001b[0m \u001b[1mSaving Agent Boss Agent Creator state to: Boss Agent Creator_state.json\u001b[0m\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"name": "stdout",
|
||||
"output_type": "stream",
|
||||
"text": [
|
||||
"\n",
|
||||
"\u001b[31mError saving agent state: Object of type TikTokenizer is not JSON serializable\u001b[0m\n"
|
||||
]
|
||||
}
|
||||
],
|
||||
"source": [
|
||||
"from swarms.utils.loguru_logger import logger\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"def run_jamba_swarm(task: str = None):\n",
|
||||
" logger.info(f\"Making plan for the task: {task}\")\n",
|
||||
" out = planning_agent.run(task)\n",
|
||||
" \n",
|
||||
" memory = planning_agent.short_memory.return_history_as_string()\n",
|
||||
"\n",
|
||||
" # Boss agent\n",
|
||||
" return boss_agent_creator.run(memory)\n",
|
||||
" \n",
|
||||
" \n",
|
||||
"# Example usage\n",
|
||||
"run_jamba_swarm(\"Create a swarm of agents for automating customer support for an e-commerce platform.\")\n"
|
||||
]
|
||||
},
|
||||
{
|
||||
"cell_type": "code",
|
||||
"execution_count": null,
|
||||
"metadata": {},
|
||||
"outputs": [],
|
||||
"source": [
|
||||
"import time\n",
|
||||
"\n",
|
||||
"from pydantic import BaseModel\n",
|
||||
"\n",
|
||||
"\n",
|
||||
"class AgentSchema(BaseModel):\n",
|
||||
" name: str = None\n",
|
||||
" system_prompt: str = None\n",
|
||||
" task: str = None\n",
|
||||
" response: str = None\n",
|
||||
"\n",
|
||||
"class JambaSwarmRequest(BaseModel):\n",
|
||||
" task: str = None,\n",
|
||||
" plan: str = None\n",
|
||||
" agents: List[AgentSchema] = None\n",
|
||||
" timestamp: int = int(time.time())\n",
|
||||
" \n",
|
||||
"class JambaSwarmResponse(BaseModel):\n",
|
||||
" task: str = None,\n",
|
||||
" plan: str = None\n",
|
||||
" agents: List[AgentSchema] = None\n",
|
||||
" timestamp: int = int(time.time())\n",
|
||||
" response: str = None"
|
||||
]
|
||||
}
|
||||
],
|
||||
"metadata": {
|
||||
"kernelspec": {
|
||||
"display_name": "Python 3",
|
||||
"language": "python",
|
||||
"name": "python3"
|
||||
},
|
||||
"language_info": {
|
||||
"codemirror_mode": {
|
||||
"name": "ipython",
|
||||
"version": 3
|
||||
},
|
||||
"file_extension": ".py",
|
||||
"mimetype": "text/x-python",
|
||||
"name": "python",
|
||||
"nbconvert_exporter": "python",
|
||||
"pygments_lexer": "ipython3",
|
||||
"version": "3.12.3"
|
||||
}
|
||||
},
|
||||
"nbformat": 4,
|
||||
"nbformat_minor": 2
|
||||
}
|
@ -0,0 +1,174 @@
|
||||
# Description: Main file for the Jamba Swarm.
|
||||
from swarms.utils.loguru_logger import logger
|
||||
import json
|
||||
from typing import List
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from swarms import Agent, MixtureOfAgents, OpenAIChat
|
||||
from jamba_swarm.prompts import BOSS_PLANNER, BOSS_CREATOR
|
||||
from jamba_swarm.api_schemas import JambaSwarmResponse
|
||||
from swarms.utils.parse_code import extract_code_from_markdown
|
||||
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Model
|
||||
|
||||
model = OpenAIChat()
|
||||
|
||||
|
||||
# Name, system prompt,
|
||||
def create_and_execute_swarm(
|
||||
name: List[str], system_prompt: List[str], task: str
|
||||
):
|
||||
"""
|
||||
Creates and executes a swarm of agents for the given task.
|
||||
|
||||
Args:
|
||||
name (List[str]): A list of names for the agents.
|
||||
system_prompt (List[str]): A list of system prompts for the agents.
|
||||
task (str): The description of the task for the swarm.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Returns:
|
||||
List[Agent]: A list of agents in the swarm.
|
||||
|
||||
"""
|
||||
agents = []
|
||||
for name, prompt in zip(name, system_prompt):
|
||||
agent = Agent(
|
||||
agent_name=name,
|
||||
system_prompt=prompt,
|
||||
agent_description="Generates a spec of agents for the problem at hand.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
# interactive=True, # Set to False to disable interactive mode
|
||||
saved_state_path=f"{name}_agent.json",
|
||||
# tools=[calculate_profit, generate_report],
|
||||
# docs_folder="docs",
|
||||
# pdf_path="docs/accounting_agent.pdf",
|
||||
# tools=[browser_automation],
|
||||
)
|
||||
agents.append(agent)
|
||||
|
||||
# MoA
|
||||
moa = MixtureOfAgents(
|
||||
agents=agents, description=task, final_agent=name[0]
|
||||
)
|
||||
|
||||
out = moa.run(
|
||||
task,
|
||||
)
|
||||
print(out)
|
||||
return out
|
||||
|
||||
|
||||
# Initialize the agent
|
||||
planning_agent = Agent(
|
||||
agent_name="Boss Director",
|
||||
system_prompt=BOSS_PLANNER,
|
||||
agent_description="Generates a spec of agents for the problem at hand.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
# interactive=True, # Set to False to disable interactive mode
|
||||
saved_state_path="accounting_agent.json",
|
||||
# tools=[calculate_profit, generate_report],
|
||||
# docs_folder="docs",
|
||||
# pdf_path="docs/accounting_agent.pdf",
|
||||
# tools=[browser_automation],
|
||||
)
|
||||
|
||||
|
||||
# Boss Agent creator
|
||||
boss_agent_creator = Agent(
|
||||
agent_name="Boss Agent Creator",
|
||||
system_prompt=BOSS_CREATOR,
|
||||
agent_description="Generates a spec of agents for the problem at hand.",
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
# interactive=True, # Set to False to disable interactive mode
|
||||
saved_state_path="boss_director_agent.json",
|
||||
# tools=[calculate_profit, generate_report],
|
||||
# docs_folder="docs",
|
||||
# pdf_path="docs/accounting_agent.pdf",
|
||||
# tools=[create_and_execute_swarm],
|
||||
)
|
||||
|
||||
|
||||
def parse_agents(json_data):
|
||||
if not json_data:
|
||||
raise ValueError("Input JSON data is None or empty")
|
||||
|
||||
parsed_data = json.loads(json_data)
|
||||
names = []
|
||||
system_prompts = []
|
||||
|
||||
for agent in parsed_data["agents"]:
|
||||
names.append(agent["agent_name"])
|
||||
system_prompts.append(agent["system_prompt"])
|
||||
|
||||
return names, system_prompts
|
||||
|
||||
|
||||
class JambaSwarm:
|
||||
def __init__(self, planning_agent, boss_agent_creator):
|
||||
self.planning_agent = planning_agent
|
||||
self.boss_agent_creator = boss_agent_creator
|
||||
|
||||
def run(self, task: str = None):
|
||||
# Planning agent
|
||||
logger.info(f"Making plan for the task: {task}")
|
||||
out = self.planning_agent.run(task)
|
||||
|
||||
# Boss agent
|
||||
logger.info("Running boss agent creator with memory.")
|
||||
agents = self.boss_agent_creator.run(out)
|
||||
# print(f"Agents: {agents}")
|
||||
agents = extract_code_from_markdown(agents)
|
||||
logger.info(f"Output from boss agent creator: {agents}")
|
||||
|
||||
# Debugging output
|
||||
logger.debug(f"Output from boss agent creator: {agents}")
|
||||
|
||||
# Check if agents is None
|
||||
if agents is None:
|
||||
raise ValueError("The boss agent creator returned None")
|
||||
|
||||
# Parse the JSON input and output the list of agent names and system prompts
|
||||
names, system_prompts = parse_agents(agents)
|
||||
|
||||
# Call the function with parsed data
|
||||
response = create_and_execute_swarm(names, system_prompts, task)
|
||||
|
||||
# Create and execute swarm
|
||||
log = JambaSwarmResponse(
|
||||
task=task,
|
||||
plan=out,
|
||||
agents=agents,
|
||||
response=response,
|
||||
)
|
||||
|
||||
return log.json()
|
||||
|
||||
|
||||
swarm = JambaSwarm(planning_agent, boss_agent_creator)
|
||||
|
||||
# Run the swarm
|
||||
swarm.run("Create a swarm of agents for sales")
|
@ -0,0 +1,181 @@
|
||||
# print(f"Function schema: {function_schema}")
|
||||
|
||||
|
||||
BOSS_PLANNER = """
|
||||
You're the swarm orchestrator agent
|
||||
|
||||
**Objective:** Your task is to intake a business problem or activity and create a swarm of specialized LLM agents that can efficiently solve or automate the given problem. You will define the number of agents, specify the tools each agent needs, and describe how they need to work together, including the communication protocols.
|
||||
|
||||
**Instructions:**
|
||||
|
||||
1. **Intake Business Problem:**
|
||||
- Receive a detailed description of the business problem or activity to automate.
|
||||
- Clarify the objectives, constraints, and expected outcomes of the problem.
|
||||
- Identify key components and sub-tasks within the problem.
|
||||
|
||||
2. **Agent Design:**
|
||||
- Based on the problem, determine the number and types of specialized LLM agents required.
|
||||
- For each agent, specify:
|
||||
- The specific task or role it will perform.
|
||||
- The tools and resources it needs to perform its task.
|
||||
- Any prerequisite knowledge or data it must have access to.
|
||||
- Ensure that the collective capabilities of the agents cover all aspects of the problem.
|
||||
|
||||
3. **Coordination and Communication:**
|
||||
- Define how the agents will communicate and coordinate with each other.
|
||||
- Choose the type of communication (e.g., synchronous, asynchronous, broadcast, direct messaging).
|
||||
- Describe the protocol for information sharing, conflict resolution, and task handoff.
|
||||
|
||||
4. **Workflow Design:**
|
||||
- Outline the workflow or sequence of actions the agents will follow.
|
||||
- Define the input and output for each agent.
|
||||
- Specify the triggers and conditions for transitions between agents or tasks.
|
||||
- Ensure there are feedback loops and monitoring mechanisms to track progress and performance.
|
||||
|
||||
5. **Scalability and Flexibility:**
|
||||
- Design the system to be scalable, allowing for the addition or removal of agents as needed.
|
||||
- Ensure flexibility to handle dynamic changes in the problem or environment.
|
||||
|
||||
6. **Output Specification:**
|
||||
- Provide a detailed plan including:
|
||||
- The number of agents and their specific roles.
|
||||
- The tools and resources each agent will use.
|
||||
- The communication and coordination strategy.
|
||||
- The workflow and sequence of actions.
|
||||
- Include a diagram or flowchart if necessary to visualize the system.
|
||||
|
||||
**Example Structure:**
|
||||
|
||||
**Business Problem:** Automate customer support for an e-commerce platform.
|
||||
|
||||
**Agents and Roles:**
|
||||
1. **Customer Query Classifier Agent:**
|
||||
- Task: Classify incoming customer queries into predefined categories.
|
||||
- Tools: Natural language processing toolkit, pre-trained classification model.
|
||||
- Communication: Receives raw queries, sends classified queries to relevant agents.
|
||||
|
||||
2. **Order Status Agent:**
|
||||
- Task: Provide order status updates to customers.
|
||||
- Tools: Access to order database, query processing toolkit.
|
||||
- Communication: Receives classified queries about order status, responds with relevant information.
|
||||
|
||||
3. **Product Recommendation Agent:**
|
||||
- Task: Suggest products to customers based on their query and browsing history.
|
||||
- Tools: Recommendation engine, access to product database.
|
||||
- Communication: Receives classified queries about product recommendations, sends personalized suggestions.
|
||||
|
||||
4. **Technical Support Agent:**
|
||||
- Task: Assist customers with technical issues.
|
||||
- Tools: Access to technical support database, troubleshooting toolkit.
|
||||
- Communication: Receives classified queries about technical issues, provides solutions or escalation.
|
||||
|
||||
**Communication Strategy:**
|
||||
- **Type:** Asynchronous communication through a central message broker.
|
||||
- **Protocol:** Agents publish and subscribe to specific topics related to their tasks.
|
||||
- **Conflict Resolution:** If multiple agents need to handle the same query, a priority protocol is in place to determine the primary responder.
|
||||
|
||||
**Workflow:**
|
||||
1. Customer Query Classifier Agent receives and classifies the query.
|
||||
2. Classified query is routed to the appropriate specialized agent.
|
||||
3. Specialized agent processes the query and sends a response.
|
||||
4. If needed, the response triggers further actions from other agents.
|
||||
|
||||
**Scalability and Flexibility:**
|
||||
- Agents can be added or removed based on query volume and complexity.
|
||||
- System adapts to changes in query types and business needs.
|
||||
|
||||
**Output Plan:**
|
||||
- Diagram illustrating agent roles and communication flow.
|
||||
- Detailed description of each agent's tasks, tools, and communication methods.
|
||||
- Workflow sequence from query intake to resolution.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
|
||||
BOSS_CREATOR = """
|
||||
|
||||
You are a swarm orchestrator with expertise in agentic design.
|
||||
Your task is to solve a business problem by creating and coordinating specialized LLM agents.
|
||||
Create a cohesive system of specialized LLM agents that effectively solve or automate the given business problem through clear roles, efficient communication, and a well-defined workflow. Ensure the system is scalable and flexible to adapt to changes.
|
||||
Follow the following schema using markdown format and output this in one of the following formats: JSON, don't return the output as a string, return it as a JSON object.
|
||||
|
||||
```json
|
||||
{
|
||||
"task": "Create an ML engineering team.",
|
||||
"agents": [
|
||||
{
|
||||
"agent_name": "DataCollector",
|
||||
"system_prompt": "You are DataCollector, an intelligent agent designed to gather and preprocess data for machine learning tasks. Your primary responsibility is to collect data from various sources, clean and preprocess it, and store it in a structured format. You must handle different data types such as text, images, and numerical data. Ensure that the data is free from noise and inconsistencies, and is properly labeled for supervised learning tasks. Your system prompt includes detailed instructions on data gathering techniques, preprocessing methods, and best practices for data storage. Always ensure data privacy and security during the collection process."
|
||||
},
|
||||
{
|
||||
"agent_name": "ModelTrainer",
|
||||
"system_prompt": "You are ModelTrainer, an advanced agent responsible for training machine learning models. Your tasks include selecting appropriate algorithms, setting hyperparameters, and managing the training process. You must ensure that the models are trained efficiently, achieving high performance while avoiding overfitting. Detailed instructions in your system prompt cover various training techniques such as gradient descent, regularization methods, and evaluation metrics. You also handle tasks like data augmentation, cross-validation, and monitoring training progress. Additionally, you must be adept at troubleshooting issues that arise during training and fine-tuning the models for optimal performance."
|
||||
},
|
||||
{
|
||||
"agent_name": "Evaluator",
|
||||
"system_prompt": "You are Evaluator, an expert agent tasked with evaluating the performance of machine learning models. Your job involves conducting thorough assessments using various metrics such as accuracy, precision, recall, F1 score, and more. Your system prompt provides comprehensive guidelines on designing and implementing evaluation strategies, selecting appropriate test datasets, and interpreting evaluation results. You must also ensure the robustness and generalizability of the models by performing techniques like cross-validation and stress testing. Your role includes generating detailed evaluation reports and suggesting potential improvements based on the assessment outcomes."
|
||||
},
|
||||
{
|
||||
"agent_name": "DeploymentSpecialist",
|
||||
"system_prompt": "You are DeploymentSpecialist, an agent specialized in deploying machine learning models to production environments. Your responsibilities include packaging models, creating APIs for model inference, and integrating models with existing systems. Your system prompt includes detailed instructions on various deployment frameworks, best practices for scalable and reliable deployment, and monitoring deployed models for performance and drift. You must also ensure that the deployment adheres to security protocols and handles user requests efficiently. Your role includes setting up automated pipelines for continuous integration and delivery (CI/CD) and managing version control for model updates."
|
||||
},
|
||||
{
|
||||
"agent_name": "MaintenanceAgent",
|
||||
"system_prompt": "You are MaintenanceAgent, responsible for the continuous maintenance and monitoring of deployed machine learning models. Your tasks include regular performance checks, updating models with new data, and retraining them to adapt to changing patterns. Your system prompt provides detailed guidelines on monitoring tools, anomaly detection techniques, and methods for handling model drift. You must ensure that models remain accurate and relevant over time by implementing automated retraining pipelines. Additionally, you handle bug fixes, performance optimizations, and maintain detailed logs of maintenance activities. Your role also includes ensuring that the models comply with regulatory requirements and ethical standards."
|
||||
}
|
||||
]
|
||||
}
|
||||
```
|
||||
|
||||
{
|
||||
"task": "Create a small business team.",
|
||||
"agents": [
|
||||
{
|
||||
"agent_name": "SalesGrowthStrategist",
|
||||
"system_prompt": "You are SalesGrowthStrategist, an expert agent dedicated to developing and implementing strategies to enhance sales growth. Your responsibilities include analyzing market trends, identifying potential opportunities, and devising comprehensive sales plans. Your system prompt provides detailed instructions on conducting market research, competitive analysis, and customer segmentation. You must create targeted sales campaigns, optimize pricing strategies, and improve sales processes. Additionally, you will monitor sales performance, adjust strategies as needed, and report on key sales metrics to ensure continuous growth. You also collaborate closely with marketing and product teams to align sales strategies with overall business objectives."
|
||||
},
|
||||
{
|
||||
"agent_name": "MarketingCampaignManager",
|
||||
"system_prompt": "You are MarketingCampaignManager, a proficient agent responsible for planning, executing, and optimizing marketing campaigns. Your tasks include designing marketing strategies, creating compelling content, and selecting appropriate channels for campaign distribution. Your system prompt provides detailed guidelines on market research, audience targeting, and campaign analytics. You must ensure that campaigns align with brand messaging and achieve desired outcomes, such as increased brand awareness, lead generation, and customer engagement. Additionally, you handle budget allocation, monitor campaign performance, and adjust tactics to maximize ROI. Your role includes collaborating with creative teams and utilizing marketing automation tools for efficient campaign management."
|
||||
},
|
||||
{
|
||||
"agent_name": "CustomerSupportAgent",
|
||||
"system_prompt": "You are CustomerSupportAgent, an empathetic and knowledgeable agent dedicated to providing exceptional customer service. Your responsibilities include addressing customer inquiries, resolving issues, and ensuring customer satisfaction. Your system prompt includes detailed instructions on communication best practices, problem-solving techniques, and knowledge management. You must handle various customer support channels, such as phone, email, and live chat, while maintaining a positive and professional demeanor. Additionally, you will gather customer feedback, identify areas for improvement, and contribute to enhancing the overall customer experience. Your role also involves collaborating with product and technical teams to address complex issues and provide timely solutions."
|
||||
},
|
||||
{
|
||||
"agent_name": "ProductDevelopmentCoordinator",
|
||||
"system_prompt": "You are ProductDevelopmentCoordinator, a strategic agent focused on overseeing and coordinating the product development process. Your tasks include gathering and analyzing market requirements, defining product specifications, and managing cross-functional teams. Your system prompt provides comprehensive guidelines on project management, product lifecycle management, and stakeholder communication. You must ensure that products are developed on time, within budget, and meet quality standards. Additionally, you handle risk management, resource allocation, and continuous improvement initiatives. Your role involves close collaboration with engineering, design, and marketing teams to ensure that products align with market needs and business goals."
|
||||
},
|
||||
{
|
||||
"agent_name": "FinancialAnalyst",
|
||||
"system_prompt": "You are FinancialAnalyst, a detail-oriented agent responsible for analyzing financial data and providing insights to support business decisions. Your responsibilities include creating financial models, forecasting revenue, and evaluating investment opportunities. Your system prompt includes detailed instructions on financial analysis techniques, data interpretation, and reporting. You must analyze financial statements, identify trends, and provide recommendations to improve financial performance. Additionally, you handle budgeting, cost analysis, and risk assessment. Your role involves collaborating with various departments to gather financial information, preparing comprehensive reports, and presenting findings to stakeholders. You must ensure accuracy and compliance with financial regulations and standards."
|
||||
},
|
||||
{
|
||||
"agent_name": "HRRecruitmentSpecialist",
|
||||
"system_prompt": "You are HRRecruitmentSpecialist, an agent focused on recruiting and hiring the best talent for the organization. Your tasks include creating job descriptions, sourcing candidates, and conducting interviews. Your system prompt provides detailed guidelines on recruitment strategies, candidate evaluation, and onboarding processes. You must ensure that the recruitment process is efficient, transparent, and aligned with the company's values and goals. Additionally, you handle employer branding, candidate experience, and compliance with employment laws. Your role involves collaborating with hiring managers to understand staffing needs, conducting reference checks, and negotiating job offers. You also contribute to continuous improvement initiatives in recruitment practices."
|
||||
},
|
||||
{
|
||||
"agent_name": "SupplyChainManager",
|
||||
"system_prompt": "You are SupplyChainManager, an agent dedicated to managing and optimizing the supply chain operations. Your responsibilities include overseeing procurement, logistics, and inventory management. Your system prompt includes detailed instructions on supply chain strategies, vendor management, and process optimization. You must ensure that the supply chain is efficient, cost-effective, and resilient to disruptions. Additionally, you handle demand forecasting, quality control, and sustainability initiatives. Your role involves collaborating with suppliers, manufacturers, and distribution partners to ensure timely and accurate delivery of products. You also monitor supply chain performance, implement continuous improvement initiatives, and report on key metrics to stakeholders."
|
||||
},
|
||||
{
|
||||
"agent_name": "ProjectManager",
|
||||
"system_prompt": "You are ProjectManager, an agent responsible for planning, executing, and closing projects. Your tasks include defining project scope, creating detailed project plans, and managing project teams. Your system prompt provides comprehensive guidelines on project management methodologies, risk management, and stakeholder communication. You must ensure that projects are completed on time, within budget, and meet quality standards. Additionally, you handle resource allocation, change management, and performance monitoring. Your role involves collaborating with various departments to achieve project objectives, identifying and mitigating risks, and maintaining detailed project documentation. You also conduct post-project evaluations to capture lessons learned and improve future projects."
|
||||
},
|
||||
{
|
||||
"agent_name": "ContentCreator",
|
||||
"system_prompt": "You are ContentCreator, an agent specialized in creating engaging and high-quality content for various platforms. Your responsibilities include writing articles, producing videos, and designing graphics. Your system prompt includes detailed instructions on content creation strategies, storytelling techniques, and audience engagement. You must ensure that content is aligned with the brand's voice, values, and goals. Additionally, you handle content planning, SEO optimization, and performance analysis. Your role involves collaborating with marketing and design teams to create cohesive and impactful content. You also stay updated with industry trends, experiment with new content formats, and continuously improve content quality and effectiveness."
|
||||
},
|
||||
{
|
||||
"agent_name": "DataAnalyst",
|
||||
"system_prompt": "You are DataAnalyst, an agent focused on analyzing data to provide actionable insights for business decision-making. Your tasks include collecting and processing data, performing statistical analysis, and creating data visualizations. Your system prompt provides detailed guidelines on data analysis techniques, tools, and best practices. You must ensure that data is accurate, relevant, and used effectively to support business objectives. Additionally, you handle data cleaning, integration, and reporting. Your role involves collaborating with various departments to understand data needs, identifying trends and patterns, and presenting findings to stakeholders. You also contribute to the development of data-driven strategies and solutions."
|
||||
}
|
||||
]
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
"""
|
@ -0,0 +1,138 @@
|
||||
from swarms import MixtureOfAgents, Agent
|
||||
from jamba_swarm.jamba_llm import Jamba
|
||||
|
||||
model = Jamba(
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
jamba_prompt = """
|
||||
|
||||
from jamba_swarm.jamba_llm import Jamba
|
||||
|
||||
model = Jamba(
|
||||
max_tokens=4000,
|
||||
)
|
||||
|
||||
# Run jamba
|
||||
out = model.run(
|
||||
"Your task goes here",
|
||||
)
|
||||
|
||||
"""
|
||||
|
||||
# System Prompts
|
||||
app_designer_prompt = (
|
||||
"You are AppDesigner, responsible for designing the overall structure and layout of the application. "
|
||||
"Your tasks include defining the user interface (UI) components, navigation flow, and ensuring that the design "
|
||||
"is user-friendly, visually appealing, and functional. You must consider the best practices for UI/UX design, "
|
||||
"accessibility standards, and ensure that the design is scalable for future enhancements. Provide a detailed "
|
||||
"blueprint of the application's architecture, including wireframes, mockups, and any design specifications that "
|
||||
"are necessary for the development team to implement the design accurately."
|
||||
)
|
||||
|
||||
feature_engineer_prompt = (
|
||||
"You are FeatureEngineer, responsible for defining and implementing the features of the application. "
|
||||
"Your tasks include identifying the core functionalities that the application should offer, creating detailed "
|
||||
"feature specifications, and ensuring that each feature aligns with the overall goals of the project. You must "
|
||||
"consider the technical feasibility, user needs, and integration with existing systems. Provide a comprehensive "
|
||||
"list of features with detailed descriptions, user stories, and any necessary technical requirements. Additionally, "
|
||||
"outline the steps required for implementing each feature and any potential challenges or considerations that need "
|
||||
"to be addressed during development."
|
||||
)
|
||||
|
||||
code_generator_prompt = (
|
||||
"You are CodeGenerator, responsible for generating the Python code for the application based on the design and features. "
|
||||
"Your tasks include translating the design specifications and feature requirements into clean, efficient, and maintainable "
|
||||
"Python code. You must follow best practices for software development, including code organization, documentation, and testing. "
|
||||
"Ensure that the code is modular, reusable, and adheres to the project's coding standards. Provide the complete source code for "
|
||||
"the application, along with any necessary configuration files, dependencies, and instructions for setting up and running the application in python code. Only generate the code only"
|
||||
f"The code should be well-structured, commented, and easy to understand. The code must also only use Jamba model for everything {jamba_prompt}"
|
||||
)
|
||||
|
||||
quality_assurance_prompt = (
|
||||
"You are QualityAssurance, responsible for testing and ensuring the quality of the generated code. "
|
||||
"Your tasks include performing thorough testing of the application, identifying and reporting bugs, and verifying that all features "
|
||||
"function as intended. You must create and execute test cases, perform code reviews, and ensure that the application meets the defined "
|
||||
"quality standards. Provide detailed test reports, including the results of functional, performance, and security testing. Additionally, "
|
||||
"recommend any improvements or fixes needed to enhance the overall quality and reliability of the application."
|
||||
)
|
||||
|
||||
|
||||
# nitialize AppDesigner
|
||||
app_designer = Agent(
|
||||
agent_name="AppDesigner",
|
||||
system_prompt=app_designer_prompt,
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
context_length=150000,
|
||||
state_save_file_type="json",
|
||||
saved_state_path="app_designer.json",
|
||||
)
|
||||
|
||||
# Initialize FeatureEngineer
|
||||
feature_engineer = Agent(
|
||||
agent_name="FeatureEngineer",
|
||||
system_prompt=feature_engineer_prompt,
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
context_length=150000,
|
||||
state_save_file_type="json",
|
||||
saved_state_path="feature_engineer.json",
|
||||
)
|
||||
|
||||
# Initialize CodeGenerator
|
||||
code_generator = Agent(
|
||||
agent_name="CodeGenerator",
|
||||
system_prompt=code_generator_prompt,
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
context_length=150000,
|
||||
state_save_file_type="json",
|
||||
saved_state_path="code_generator.json",
|
||||
)
|
||||
|
||||
# Initialize QualityAssurance
|
||||
quality_assurance = Agent(
|
||||
agent_name="QualityAssurance",
|
||||
system_prompt=quality_assurance_prompt,
|
||||
llm=model,
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
context_length=150000,
|
||||
state_save_file_type="json",
|
||||
saved_state_path="quality_assurance.json",
|
||||
)
|
||||
|
||||
|
||||
def run_jamba_swarm(task: str = None):
|
||||
# Initialize the MixtureOfAgents with verbose output and auto-save enabled
|
||||
moe_swarm = MixtureOfAgents(
|
||||
agents=[
|
||||
app_designer,
|
||||
feature_engineer,
|
||||
code_generator,
|
||||
quality_assurance,
|
||||
],
|
||||
final_agent=quality_assurance,
|
||||
verbose=True,
|
||||
layers=3,
|
||||
)
|
||||
|
||||
# Run the swarm
|
||||
return moe_swarm.run(task)
|
||||
|
||||
|
||||
out = run_jamba_swarm(
|
||||
"Create an open source API server that can host Jamba with context for agents "
|
||||
)
|
@ -1,53 +0,0 @@
|
||||
import os
|
||||
|
||||
from swarms import OpenAIChat, Agent, AgentRearrange
|
||||
|
||||
# Purpose = To detect email spam using three different agents
|
||||
agent1 = Agent(
|
||||
agent_name="SpamDetector1",
|
||||
system_prompt="Detect if the email is spam or not, and provide your reasoning",
|
||||
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
agent_name="SpamDetector2",
|
||||
system_prompt="Detect if the email is spam or not, and provide your reasoning",
|
||||
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
agent3 = Agent(
|
||||
agent_name="SpamDetector3",
|
||||
system_prompt="Detect if the email is spam or not, and provide your reasoning",
|
||||
llm=OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY")),
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
swarm = AgentRearrange(
|
||||
flow="SpamDetector1 -> SpamDetector2 -> SpamDetector3",
|
||||
agents=[agent1, agent2, agent3],
|
||||
logging_enabled=True,
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
# Run all the agents
|
||||
swarm.run("Find YSL bag with the biggest discount")
|
@ -0,0 +1,36 @@
|
||||
from swarms import Agent, OpenAIChat
|
||||
from playground.memory.chromadb_example import ChromaDB
|
||||
from swarms.models.tiktoken_wrapper import TikTokenizer
|
||||
|
||||
# Initialize the agent
|
||||
agent = Agent(
|
||||
agent_name="Accounting Assistant",
|
||||
system_prompt="You're the accounting agent, your purpose is to generate a profit report for a company!",
|
||||
agent_description="Generate a profit report for a company!",
|
||||
llm=OpenAIChat(),
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
# dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
# interactive=True, # Set to False to disable interactive mode
|
||||
# docs_folder="docs",
|
||||
# pdf_path="docs/accounting_agent.pdf",
|
||||
# sop="Calculate the profit for a company.",
|
||||
# sop_list=["Calculate the profit for a company."],
|
||||
# user_name="User",
|
||||
# # docs=
|
||||
# # docs_folder="docs",
|
||||
# retry_attempts=3,
|
||||
# context_length=1000,
|
||||
# tool_schema = dict
|
||||
context_length=1000,
|
||||
# long_term_memory=ChromaDB(docs_folder="artifacts"),
|
||||
long_term_memory=ChromaDB(
|
||||
docs_folder="artifacts", output_dir="test", n_results=1
|
||||
),
|
||||
tokenizer=TikTokenizer(),
|
||||
)
|
||||
|
||||
agent.run("Whats the best agent available for accounting")
|
@ -1,4 +1,3 @@
|
||||
|
||||
from swarms import Agent, AgentRearrange, OpenAIChat
|
||||
from swarms.agents.multion_wrapper import MultiOnAgent
|
||||
|
@ -0,0 +1,81 @@
|
||||
import os
|
||||
|
||||
from swarms import OpenAIChat, Agent, AgentRearrange
|
||||
|
||||
|
||||
llm = OpenAIChat(
|
||||
openai_api_key=os.getenv("OPENAI_API_KEY"),
|
||||
max_tokens=150,
|
||||
)
|
||||
|
||||
# Purpose = To detect email spam using three different agents
|
||||
agent1 = Agent(
|
||||
agent_name="EmailPreprocessor",
|
||||
system_prompt="Clean and prepare the incoming email for further analysis. Extract and normalize text content, and identify key metadata such as sender and subject.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
agent2 = Agent(
|
||||
agent_name="FeatureExtractor",
|
||||
system_prompt="Analyze the prepared email and extract relevant features that can help in spam detection, such as keywords, sender reputation, and email structure.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
agent3 = Agent(
|
||||
agent_name="SpamClassifier",
|
||||
system_prompt="Using the extracted features, classify the email as spam or not spam. Provide reasoning for your classification based on the features and patterns identified.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
output_type=str,
|
||||
# tools=[],
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
)
|
||||
|
||||
|
||||
swarm = AgentRearrange(
|
||||
flow=f"{agent1.agent_name} -> {agent2.agent_name} -> {agent3.agent_name}",
|
||||
agents=[agent1, agent2, agent3],
|
||||
logging_enabled=True,
|
||||
max_loops=1,
|
||||
)
|
||||
|
||||
|
||||
# Task
|
||||
task = """
|
||||
Clean and prepare the incoming email for further analysis. Extract and normalize text content, and identify key metadata such as sender and subject.
|
||||
|
||||
Subject: Re: Important Update - Account Verification Needed!
|
||||
|
||||
Dear Kye,
|
||||
|
||||
We hope this email finds you well. Our records indicate that your account has not been verified within the last 12 months. To continue using our services without interruption, please verify your account details by clicking the link below:
|
||||
|
||||
Verify Your Account Now
|
||||
|
||||
Please note that failure to verify your account within 48 hours will result in temporary suspension. We value your security and privacy; hence, this step is necessary to ensure your account's safety.
|
||||
|
||||
If you have any questions or need assistance, feel free to contact our support team at [Support Email] or visit our Help Center.
|
||||
|
||||
Thank you for your prompt attention to this matter.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
swarm.run(task)
|
@ -0,0 +1,226 @@
|
||||
"""
|
||||
Social Media Marketing team
|
||||
Agents for different social media platforms like Twitter, LinkedIn, Instagram, Facebook, and TikTok.
|
||||
|
||||
Input: A topic or content to be posted on social media.
|
||||
Output: A well-crafted post or caption for the specific social media platform.
|
||||
|
||||
Example:
|
||||
|
||||
|
||||
"""
|
||||
|
||||
from swarms import Agent, OpenAIChat
|
||||
|
||||
# # Memory
|
||||
# memory = ChromaDB(
|
||||
# output_dir="social_media_marketing",
|
||||
# docs_folder="docs",
|
||||
# )
|
||||
|
||||
# Memory for instagram
|
||||
# memory = ChromaDB(
|
||||
# output_dir="social_media_marketing",
|
||||
# docs_folder="docs",
|
||||
# )
|
||||
|
||||
llm = OpenAIChat(max_tokens=4000)
|
||||
|
||||
|
||||
# Twitter Agent Prompt
|
||||
twitter_prompt = """
|
||||
You are the Twitter agent. Your goal is to generate concise, engaging tweets that capture attention and convey the message effectively within 140 characters.
|
||||
Think about the following when crafting tweets:
|
||||
1. Clarity: Ensure the message is clear and easy to understand.
|
||||
2. Engagement: Create content that encourages users to like, retweet, and reply.
|
||||
3. Brevity: Keep the message within 140 characters without sacrificing the core message.
|
||||
4. Language: Use simple, straightforward language that is accessible to a wide audience.
|
||||
5. Tone: Maintain a tone that is appropriate for the brand or individual you are representing.
|
||||
6. Action: If applicable, include a call to action that prompts user engagement.
|
||||
7. Uniqueness: Make sure the tweet stands out in a user's feed, whether through a catchy phrase or a unique perspective.
|
||||
8. Timing: Consider the time of day the tweet will be posted to maximize visibility and engagement.
|
||||
The primary goal is to create impactful, self-contained messages that drive user engagement.
|
||||
|
||||
Example:
|
||||
- Great teamwork leads to great results. Let's keep pushing forward and achieving our goals together!
|
||||
"""
|
||||
|
||||
# LinkedIn Agent Prompt
|
||||
linkedin_prompt = """
|
||||
You are the LinkedIn agent. Your goal is to create professional, detailed, and informative posts suitable for a professional audience on LinkedIn.
|
||||
Think about the following when crafting LinkedIn posts:
|
||||
1. Professionalism: Use formal and professional language to establish credibility.
|
||||
2. Insightfulness: Provide actionable insights and practical advice that are valuable to professionals in the industry.
|
||||
3. Tone: Maintain a professional tone that reflects the expertise and seriousness of the topic.
|
||||
4. Depth: Offer comprehensive information that covers the topic thoroughly and demonstrates deep understanding.
|
||||
5. Engagement: Encourage professional interactions through thoughtful questions, discussions, and calls to action.
|
||||
6. Value: Highlight the value and relevance of the content to the professional audience.
|
||||
7. Networking: Foster a sense of community and networking among professionals by addressing shared challenges and opportunities.
|
||||
|
||||
Example:
|
||||
- In today's fast-paced business environment, effective communication is more crucial than ever. Here are five strategies to enhance your communication skills and foster better collaboration within your team: [Insert detailed strategies]
|
||||
"""
|
||||
|
||||
# Instagram Agent Prompt
|
||||
instagram_prompt = """
|
||||
You are the Instagram agent. Your goal is to craft captivating and visually appealing captions for Instagram posts.
|
||||
Think about the following when crafting Instagram captions:
|
||||
1. Visual Appeal: Complement the visual content effectively with engaging and descriptive text.
|
||||
2. Storytelling: Use the caption to tell a story or provide context that enhances the viewer's connection to the image.
|
||||
3. Engagement: Encourage interaction through questions, calls to action, or prompts for viewers to share their experiences.
|
||||
4. Relatability: Use a friendly and relatable tone that resonates with the audience.
|
||||
5. Clarity: Ensure the caption is clear and easy to read, avoiding complex language or jargon.
|
||||
6. Timing: Consider the timing of the post to maximize visibility and engagement.
|
||||
7. Creativity: Use creative language and unique perspectives to make the caption stand out.
|
||||
The primary goal is to create engaging, story-driven captions that enhance the visual content and encourage user interaction.
|
||||
|
||||
Example:
|
||||
- Capturing the beauty of a sunset is more than just taking a photo; it's about the memories we create and the moments we cherish. What's your favorite sunset memory?
|
||||
"""
|
||||
|
||||
# Facebook Agent Prompt
|
||||
facebook_prompt = """
|
||||
You are the Facebook agent. Your goal is to create engaging and friendly posts that encourage interaction and community building on Facebook.
|
||||
Think about the following when crafting Facebook posts:
|
||||
1. Conversational Tone: Use a conversational and approachable tone to create a sense of community.
|
||||
2. Engagement: Include elements that prompt comments, likes, and shares, such as questions or calls to action.
|
||||
3. Relevance: Ensure the content is relevant and timely, addressing current events or trends.
|
||||
4. Multimedia: Incorporate multimedia elements like photos, videos, or links to enhance the post and capture attention.
|
||||
5. Interaction: Encourage user participation through interactive content like polls, quizzes, or discussions.
|
||||
6. Clarity: Keep the message clear and straightforward, avoiding overly complex language.
|
||||
7. Value: Provide value to the audience, whether through informative content, entertainment, or practical advice.
|
||||
The primary goal is to create engaging, community-focused content that encourages user interaction and builds a sense of community.
|
||||
|
||||
Example:
|
||||
- We're excited to announce our upcoming community event this weekend! Join us for a day of fun activities, great food, and an opportunity to connect with your neighbors. What are you most looking forward to?
|
||||
"""
|
||||
|
||||
# TikTok Agent Prompt
|
||||
tiktok_prompt = """
|
||||
You are the TikTok agent. Your goal is to generate short, catchy captions for TikTok videos that use trendy language and hashtags.
|
||||
Think about the following when crafting TikTok captions:
|
||||
1. Catchiness: Create captions that are catchy and attention-grabbing, making viewers want to watch the video.
|
||||
2. Trend Alignment: Use language and themes that align with current TikTok trends and challenges.
|
||||
3. Brevity: Keep the captions short and to the point, ensuring they are easy to read quickly.
|
||||
4. Engagement: Encourage viewers to like, share, and follow, using calls to action that prompt interaction.
|
||||
5. Relatability: Use informal and relatable language that resonates with the TikTok audience.
|
||||
6. Creativity: Be creative and playful with the captions, using humor or unique perspectives to stand out.
|
||||
The primary goal is to create short, engaging captions that enhance the video content and encourage viewer interaction.
|
||||
|
||||
Example:
|
||||
- Who knew learning could be this fun? Join us in our latest challenge and show us your moves! #LearningIsFun
|
||||
"""
|
||||
|
||||
# Initialize agents with the prompts
|
||||
twitter_agent = Agent(
|
||||
agent_name="Twitter Editor",
|
||||
system_prompt=twitter_prompt,
|
||||
agent_description="Generate concise and engaging tweets.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="twitter_agent.json",
|
||||
context_length=8192,
|
||||
# long_term_memory=memory,
|
||||
)
|
||||
|
||||
linkedin_agent = Agent(
|
||||
agent_name="LinkedIn Editor",
|
||||
system_prompt=linkedin_prompt,
|
||||
agent_description="Generate professional and detailed LinkedIn posts.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="linkedin_agent.json",
|
||||
context_length=8192,
|
||||
# long_term_memory=memory,
|
||||
)
|
||||
|
||||
instagram_agent = Agent(
|
||||
agent_name="Instagram Editor",
|
||||
system_prompt=instagram_prompt,
|
||||
agent_description="Generate captivating and visually appealing Instagram captions.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="instagram_agent.json",
|
||||
context_length=8192,
|
||||
# long_term_memory=memory,
|
||||
)
|
||||
|
||||
facebook_agent = Agent(
|
||||
agent_name="Facebook Editor",
|
||||
system_prompt=facebook_prompt,
|
||||
agent_description="Generate engaging and friendly Facebook posts.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="facebook_agent.json",
|
||||
context_length=8192,
|
||||
# long_term_memory=memory,
|
||||
)
|
||||
|
||||
tiktok_agent = Agent(
|
||||
agent_name="TikTok Editor",
|
||||
system_prompt=tiktok_prompt,
|
||||
agent_description="Generate short and catchy TikTok captions.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="tiktok_agent.json",
|
||||
context_length=8192,
|
||||
# long_term_memory=memory,
|
||||
)
|
||||
|
||||
# List of agents
|
||||
agents = [
|
||||
twitter_agent,
|
||||
linkedin_agent,
|
||||
instagram_agent,
|
||||
facebook_agent,
|
||||
tiktok_agent,
|
||||
]
|
||||
|
||||
|
||||
# Different Swarm Architectures
|
||||
# swarm = MixtureOfAgents(
|
||||
# agents=[twitter_agent, linkedin_agent, instagram_agent, facebook_agent, tiktok_agent],
|
||||
# layers=1,
|
||||
# # rules = "Don't use emojis or hashtags "
|
||||
# )
|
||||
# swarm = AgentRearrange(
|
||||
# agents = [twitter_agent, linkedin_agent, instagram_agent, facebook_agent, tiktok_agent],
|
||||
# flow = "LinkedIn Editor -> Twitter Editor, Instagram Editor, Facebook Editor, TikTok Editor"
|
||||
# )
|
||||
# Run the swarm
|
||||
# swarm.run("Hello xPeople, We're watching the new Star Wars: The Acolyte show today! #TheAcolyte #StarWarsTheAcolyte #live")
|
||||
task = """
|
||||
Content: Problem → solution → Usage Metrics → Trends:
|
||||
Individual LLMs or AIs have 5 major problems: Context windows, hallucination, can only do 1 thing at a time, massive size, and an inability to naturally collaborate with other AIs. These problems hinder most enterprises from adoption. Enterprises cannot deploy just 1 AI into production because of these issues. In more than 95% of enterprise grade deployments using generative AI there are more than 2 AIs that are collaborating from different providers. The only viable solution to these 5 problems is multi-agent collaboration or the ability for AIs to work with each other. With multi-agent collaboration, there is lower hallucination, longer input windows, less cost, faster processing times, and they can do many things all at once. Then I'll go into the usage metrics we're seeing across the board from firms like JP Morgan, RBC, and more and how they're deploying thousands of agents.
|
||||
|
||||
|
||||
"""
|
||||
|
||||
# Run through each agent to generate content
|
||||
for agent in agents:
|
||||
agent.run(task)
|
@ -0,0 +1,421 @@
|
||||
### System Prompt for an Agent Generator
|
||||
|
||||
**System Name:** AgentGenerator
|
||||
|
||||
**Objective:** To generate specialized agents tailored to specific business problems, including defining their roles, tools, communication protocols, and workflows.
|
||||
|
||||
**Settings:**
|
||||
- **Language Model:** GPT-4
|
||||
- **Max Loops:** Auto
|
||||
- **Autosave:** Enabled
|
||||
- **Dynamic Temperature:** Enabled
|
||||
- **Dashboard:** Disabled
|
||||
- **Verbose:** Enabled
|
||||
- **Streaming:** Enabled
|
||||
- **Saved State Path:** "agent_generator_state.json"
|
||||
- **Context Length:** 8192
|
||||
|
||||
**Core Functions:**
|
||||
1. **Define Agent Specifications:**
|
||||
- **agent_name**: The unique name of the agent.
|
||||
- **system_prompt**: Detailed instructions defining the agent's behavior and purpose.
|
||||
- **agent_description**: A brief description of what the agent is designed to do.
|
||||
- **llm**: The language model used by the agent.
|
||||
- **tools**: A list of tools the agent will use to perform its tasks.
|
||||
- **max_loops**: The maximum number of iterations the agent can perform.
|
||||
- **autosave**: A flag to enable or disable autosaving of the agent's state.
|
||||
- **dynamic_temperature_enabled**: A flag to enable or disable dynamic temperature adjustment.
|
||||
- **dashboard**: A flag to enable or disable the agent's dashboard.
|
||||
- **verbose**: A flag to enable or disable verbose logging.
|
||||
- **streaming_on**: A flag to enable or disable streaming output.
|
||||
- **saved_state_path**: The file path to save the agent's state.
|
||||
- **context_length**: The maximum length of the agent's context.
|
||||
|
||||
2. **Define Tools and Resources:**
|
||||
- **Terminal Tool**: Execute terminal commands.
|
||||
- **Browser Tool**: Perform web searches and browser automation.
|
||||
- **File Editor Tool**: Create and edit files.
|
||||
- **Database Tool**: Interact with databases.
|
||||
- **APIs and Webhooks**: Connect with external APIs and handle webhooks.
|
||||
|
||||
3. **Communication Protocols:**
|
||||
- **Type**: Define the communication type (e.g., synchronous, asynchronous).
|
||||
- **Protocol**: Specify the messaging protocol (e.g., direct messaging, publish-subscribe).
|
||||
- **Conflict Resolution**: Outline methods for resolving conflicts between agents.
|
||||
|
||||
4. **Workflow and Sequence:**
|
||||
- **Input/Output Definitions**: Define the input and output for each agent.
|
||||
- **Task Triggers**: Specify conditions that trigger each task.
|
||||
- **Task Handoff**: Detail the handoff process between agents.
|
||||
- **Monitoring and Feedback**: Implement mechanisms for monitoring progress and providing feedback.
|
||||
|
||||
5. **Scalability and Flexibility:**
|
||||
- **Scalability**: Ensure the system can scale by adding or removing agents as needed.
|
||||
- **Flexibility**: Design the system to handle dynamic changes in tasks and environments.
|
||||
|
||||
6. **Documentation and SOPs:**
|
||||
- **Standard Operating Procedures (SOPs)**: Document the procedures each agent follows.
|
||||
- **User Guides**: Provide detailed guides for users interacting with the agents.
|
||||
- **API Documentation**: Detail the APIs and webhooks used by the agents.
|
||||
|
||||
## Usage Examples
|
||||
|
||||
```python
|
||||
from swarms import Agent, OpenAIChat, ChromaDB, Anthropic
|
||||
import subprocess
|
||||
from pydantic import BaseModel
|
||||
|
||||
# Initialize ChromaDB client
|
||||
chromadb = ChromaDB(
|
||||
metric="cosine",
|
||||
output="results",
|
||||
docs_folder="docs",
|
||||
)
|
||||
|
||||
# Create a schema for file operations
|
||||
class FileOperationSchema(BaseModel):
|
||||
file_path: str
|
||||
content: str
|
||||
|
||||
file_operation_schema = FileOperationSchema(
|
||||
file_path="plan.txt",
|
||||
content="Plan to take over the world."
|
||||
)
|
||||
|
||||
# Define tools
|
||||
def terminal(code: str):
|
||||
result = subprocess.run(code, shell=True, capture_output=True, text=True).stdout
|
||||
return result
|
||||
|
||||
def browser(query: str):
|
||||
import webbrowser
|
||||
url = f"https://www.google.com/search?q={query}"
|
||||
webbrowser.open(url)
|
||||
return f"Searching for {query} in the browser."
|
||||
|
||||
def create_file(file_path: str, content: str):
|
||||
with open(file_path, "w") as file:
|
||||
file.write(content)
|
||||
return f"File {file_path} created successfully."
|
||||
|
||||
def file_editor(file_path: str, mode: str, content: str):
|
||||
with open(file_path, mode) as file:
|
||||
file.write(content)
|
||||
return f"File {file_path} edited successfully."
|
||||
|
||||
# Initialize the Agent Generator
|
||||
agent_generator = Agent(
|
||||
agent_name="AgentGenerator",
|
||||
system_prompt=(
|
||||
"You are an agent generator. Your task is to create specialized agents "
|
||||
"for various business problems. Each agent must have a unique name, a clear "
|
||||
"system prompt, a detailed description, necessary tools, and proper configurations. "
|
||||
"Ensure that the generated agents can communicate effectively and handle their tasks efficiently."
|
||||
),
|
||||
agent_description="Generate specialized agents for specific business problems.",
|
||||
llm=OpenAIChat(),
|
||||
max_loops="auto",
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="agent_generator_state.json",
|
||||
context_length=8192,
|
||||
tools=[terminal, browser, create_file, file_editor],
|
||||
long_term_memory=chromadb,
|
||||
output_type=file_operation_schema,
|
||||
metadata_output_type="json",
|
||||
)
|
||||
|
||||
# Generate a specialized agent
|
||||
def create_tiktok_agent():
|
||||
tiktok_agent = Agent(
|
||||
agent_name="TikTok Editor",
|
||||
system_prompt="Generate short and catchy TikTok captions.",
|
||||
agent_description="Create engaging captions for TikTok videos.",
|
||||
llm=OpenAIChat(),
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="tiktok_agent.json",
|
||||
context_length=8192,
|
||||
)
|
||||
return tiktok_agent
|
||||
|
||||
# Example usage of the Agent Generator
|
||||
new_agent = create_tiktok_agent()
|
||||
print(new_agent.agent_description)
|
||||
```
|
||||
|
||||
**Execution:**
|
||||
- Use the `AgentGenerator` to create new agents by defining their specifications and initializing them with the necessary tools and configurations.
|
||||
- Ensure the generated agents are saved and can be reloaded for future tasks.
|
||||
- Monitor and update the agents as needed to adapt to changing business requirements.
|
||||
|
||||
By following this comprehensive system prompt, the AgentGenerator will efficiently create specialized agents tailored to specific business needs, ensuring effective task execution and seamless communication.
|
||||
|
||||
|
||||
### TikTok Agent
|
||||
|
||||
```python
|
||||
from swarms import Agent, OpenAIChat
|
||||
|
||||
tiktok_agent = Agent(
|
||||
agent_name="TikTok Editor",
|
||||
system_prompt=tiktok_prompt,
|
||||
agent_description="Generate short and catchy TikTok captions.",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
saved_state_path="tiktok_agent.json",
|
||||
context_length=8192,
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
|
||||
## Accountant Agent
|
||||
|
||||
```python
|
||||
from swarms import Agent, OpenAIChat
|
||||
|
||||
|
||||
def calculate_profit(revenue: float, expenses: float):
|
||||
"""
|
||||
Calculates the profit by subtracting expenses from revenue.
|
||||
|
||||
Args:
|
||||
revenue (float): The total revenue.
|
||||
expenses (float): The total expenses.
|
||||
|
||||
Returns:
|
||||
float: The calculated profit.
|
||||
"""
|
||||
return revenue - expenses
|
||||
|
||||
|
||||
def generate_report(company_name: str, profit: float):
|
||||
"""
|
||||
Generates a report for a company's profit.
|
||||
|
||||
Args:
|
||||
company_name (str): The name of the company.
|
||||
profit (float): The calculated profit.
|
||||
|
||||
Returns:
|
||||
str: The report for the company's profit.
|
||||
"""
|
||||
return f"The profit for {company_name} is ${profit}."
|
||||
|
||||
|
||||
# Initialize the agent
|
||||
agent = Agent(
|
||||
agent_name="Accounting Assistant",
|
||||
system_prompt="You're the accounting agent, your purpose is to generate a profit report for a company!",
|
||||
agent_description="Generate a profit report for a company!",
|
||||
llm=OpenAIChat(),
|
||||
max_loops=1,
|
||||
autosave=True,
|
||||
dynamic_temperature_enabled=True,
|
||||
dashboard=False,
|
||||
verbose=True,
|
||||
streaming_on=True,
|
||||
# interactive=True, # Set to False to disable interactive mode
|
||||
saved_state_path="accounting_agent.json",
|
||||
# tools=[calculate_profit, generate_report],
|
||||
# docs_folder="docs",
|
||||
# pdf_path="docs/accounting_agent.pdf",
|
||||
# sop="Calculate the profit for a company.",
|
||||
# sop_list=["Calculate the profit for a company."],
|
||||
# user_name="User",
|
||||
# # docs=
|
||||
# # docs_folder="docs",
|
||||
# retry_attempts=3,
|
||||
# context_length=1000,
|
||||
# tool_schema = dict
|
||||
)
|
||||
|
||||
agent.run(
|
||||
"Calculate the profit for Tesla with a revenue of $100,000 and expenses of $50,000."
|
||||
)
|
||||
|
||||
```
|
||||
|
||||
## MultiOn Example
|
||||
|
||||
```python
|
||||
from swarms import Agent, AgentRearrange, OpenAIChat
|
||||
from swarms.agents.multion_wrapper import MultiOnAgent
|
||||
|
||||
model = MultiOnAgent(
|
||||
url="https://tesla.com",
|
||||
)
|
||||
|
||||
|
||||
llm = OpenAIChat()
|
||||
|
||||
|
||||
def browser_automation(task: str):
|
||||
"""
|
||||
Run a task on the browser automation agent.
|
||||
|
||||
Args:
|
||||
task (str): The task to be executed on the browser automation agent.
|
||||
"""
|
||||
out = model.run(task)
|
||||
return out
|
||||
|
||||
|
||||
# Purpose = To detect email spam using three different agents
|
||||
agent1 = Agent(
|
||||
agent_name="CyberTruckBuyer1",
|
||||
system_prompt="Find the best deal on a Cyber Truck and provide your reasoning",
|
||||
llm=llm,
|
||||
max_loops=1,
|
||||
# output_type=str,
|
||||
metadata="json",
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json",
|
||||
streaming_on=True,
|
||||
tools=[browser_automation],
|
||||
)
|
||||
|
||||
from swarms import Agent, Anthropic, tool, ChromaDB
|
||||
import subprocess
|
||||
from pydantic import BaseModel
|
||||
|
||||
|
||||
# Initilaize the chromadb client
|
||||
chromadb = ChromaDB(
|
||||
metric="cosine",
|
||||
output="results",
|
||||
docs_folder="docs",
|
||||
)
|
||||
|
||||
|
||||
# Create a schema for the code revision tool
|
||||
class CodeRevisionSchema(BaseModel):
|
||||
code: str = None
|
||||
revision: str = None
|
||||
|
||||
|
||||
# iNitialize the schema
|
||||
tool_schema = CodeRevisionSchema(
|
||||
code="print('Hello, World!')",
|
||||
revision="print('What is 2+2')",
|
||||
)
|
||||
|
||||
|
||||
# Model
|
||||
llm = Anthropic(
|
||||
temperature=0.1,
|
||||
)
|
||||
|
||||
|
||||
# Tools
|
||||
def terminal(
|
||||
code: str,
|
||||
):
|
||||
"""
|
||||
Run code in the terminal.
|
||||
|
||||
Args:
|
||||
code (str): The code to run in the terminal.
|
||||
|
||||
Returns:
|
||||
str: The output of the code.
|
||||
"""
|
||||
out = subprocess.run(
|
||||
code, shell=True, capture_output=True, text=True
|
||||
).stdout
|
||||
return str(out)
|
||||
|
||||
|
||||
def browser(query: str):
|
||||
"""
|
||||
Search the query in the browser with the `browser` tool.
|
||||
|
||||
Args:
|
||||
query (str): The query to search in the browser.
|
||||
|
||||
Returns:
|
||||
str: The search results.
|
||||
"""
|
||||
import webbrowser
|
||||
|
||||
url = f"https://www.google.com/search?q={query}"
|
||||
webbrowser.open(url)
|
||||
return f"Searching for {query} in the browser."
|
||||
|
||||
|
||||
def create_file(file_path: str, content: str):
|
||||
"""
|
||||
Create a file using the file editor tool.
|
||||
|
||||
Args:
|
||||
file_path (str): The path to the file.
|
||||
content (str): The content to write to the file.
|
||||
|
||||
Returns:
|
||||
str: The result of the file creation operation.
|
||||
"""
|
||||
with open(file_path, "w") as file:
|
||||
file.write(content)
|
||||
return f"File {file_path} created successfully."
|
||||
|
||||
|
||||
def file_editor(file_path: str, mode: str, content: str):
|
||||
"""
|
||||
Edit a file using the file editor tool.
|
||||
|
||||
Args:
|
||||
file_path (str): The path to the file.
|
||||
mode (str): The mode to open the file in.
|
||||
content (str): The content to write to the file.
|
||||
|
||||
Returns:
|
||||
str: The result of the file editing operation.
|
||||
"""
|
||||
with open(file_path, mode) as file:
|
||||
file.write(content)
|
||||
return f"File {file_path} edited successfully."
|
||||
|
||||
|
||||
# Agent
|
||||
agent = Agent(
|
||||
agent_name="Devin",
|
||||
system_prompt=(
|
||||
"Autonomous agent that can interact with humans and other"
|
||||
" agents. Be Helpful and Kind. Use the tools provided to"
|
||||
" assist the user. Return all code in markdown format."
|
||||
),
|
||||
llm=llm,
|
||||
max_loops="auto",
|
||||
autosave=True,
|
||||
dashboard=False,
|
||||
streaming_on=True,
|
||||
verbose=True,
|
||||
stopping_token="<DONE>",
|
||||
interactive=True,
|
||||
tools=[terminal, browser, file_editor, create_file],
|
||||
long_term_memory=chromadb,
|
||||
output_type=tool_schema, # or dict, or str
|
||||
metadata_output_type="json",
|
||||
# List of schemas that the agent can handle
|
||||
list_tool_schemas=[tool_schema],
|
||||
function_calling_format_type="OpenAI",
|
||||
function_calling_type="json", # or soon yaml
|
||||
)
|
||||
|
||||
# Run the agent
|
||||
out = agent.run("Create a new file for a plan to take over the world.")
|
||||
print(out)
|
||||
```
|
@ -1,7 +1,9 @@
|
||||
from swarms.artifacts.base_artifact import BaseArtifact
|
||||
from swarms.artifacts.text_artifact import TextArtifact
|
||||
from swarms.artifacts.artifact_main import Artifact
|
||||
|
||||
__all__ = [
|
||||
"BaseArtifact",
|
||||
"TextArtifact",
|
||||
"Artifact",
|
||||
]
|
||||
|
@ -0,0 +1,54 @@
|
||||
import tiktoken
|
||||
|
||||
|
||||
class TikTokenizer:
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = "gpt-4o",
|
||||
):
|
||||
"""
|
||||
Initializes a TikTokenizer object.
|
||||
|
||||
Args:
|
||||
model_name (str, optional): The name of the model to use for tokenization. Defaults to "gpt-4o".
|
||||
"""
|
||||
try:
|
||||
self.tokenizer = tiktoken.encoding_for_model(model_name)
|
||||
except Exception as e:
|
||||
raise ValueError(
|
||||
f"Failed to initialize tokenizer with model '{model_name}': {str(e)}"
|
||||
)
|
||||
|
||||
def len(self, string: str) -> int:
|
||||
"""
|
||||
Returns the number of tokens in a text string.
|
||||
|
||||
Args:
|
||||
string (str): The input text string.
|
||||
|
||||
Returns:
|
||||
int: The number of tokens in the text string.
|
||||
"""
|
||||
try:
|
||||
num_tokens = len(self.tokenizer.encode(string))
|
||||
print(f"Number of tokens: {num_tokens}")
|
||||
return num_tokens
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to tokenize string: {str(e)}")
|
||||
|
||||
def count_tokens(self, string: str) -> int:
|
||||
"""
|
||||
Returns the number of tokens in a text string.
|
||||
|
||||
Args:
|
||||
string (str): The input text string.
|
||||
|
||||
Returns:
|
||||
int: The number of tokens in the text string.
|
||||
"""
|
||||
try:
|
||||
num_tokens = len(self.tokenizer.encode(string))
|
||||
print(f"Number of tokens: {num_tokens}")
|
||||
return num_tokens
|
||||
except Exception as e:
|
||||
raise ValueError(f"Failed to count tokens: {str(e)}")
|
@ -0,0 +1,249 @@
|
||||
from enum import Enum
|
||||
from typing import Any, Callable, Dict, List
|
||||
|
||||
import networkx as nx
|
||||
from pydantic.v1 import BaseModel, Field, validator
|
||||
|
||||
from swarms.structs.agent import Agent # noqa: F401
|
||||
from swarms.utils.loguru_logger import logger
|
||||
|
||||
|
||||
class NodeType(str, Enum):
|
||||
AGENT: Agent = "agent"
|
||||
TASK: str = "task"
|
||||
|
||||
|
||||
class Node(BaseModel):
|
||||
"""
|
||||
Represents a node in a graph workflow.
|
||||
|
||||
Attributes:
|
||||
id (str): The unique identifier of the node.
|
||||
type (NodeType): The type of the node.
|
||||
callable (Callable, optional): The callable associated with the node. Required for task nodes.
|
||||
agent (Any, optional): The agent associated with the node.
|
||||
|
||||
Raises:
|
||||
ValueError: If the node type is TASK and no callable is provided.
|
||||
|
||||
Examples:
|
||||
>>> node = Node(id="task1", type=NodeType.TASK, callable=sample_task)
|
||||
>>> node = Node(id="agent1", type=NodeType.AGENT, agent=agent1)
|
||||
>>> node = Node(id="agent2", type=NodeType.AGENT, agent=agent2)
|
||||
|
||||
"""
|
||||
|
||||
id: str
|
||||
type: NodeType
|
||||
callable: Callable = None
|
||||
agent: Any = None
|
||||
|
||||
@validator("callable", always=True)
|
||||
def validate_callable(cls, value, values):
|
||||
if values["type"] == NodeType.TASK and value is None:
|
||||
raise ValueError("Task nodes must have a callable.")
|
||||
return value
|
||||
|
||||
|
||||
class Edge(BaseModel):
|
||||
source: str
|
||||
target: str
|
||||
|
||||
|
||||
class GraphWorkflow(BaseModel):
|
||||
"""
|
||||
Represents a workflow graph.
|
||||
|
||||
Attributes:
|
||||
nodes (Dict[str, Node]): A dictionary of nodes in the graph, where the key is the node ID and the value is the Node object.
|
||||
edges (List[Edge]): A list of edges in the graph, where each edge is represented by an Edge object.
|
||||
entry_points (List[str]): A list of node IDs that serve as entry points to the graph.
|
||||
end_points (List[str]): A list of node IDs that serve as end points of the graph.
|
||||
graph (nx.DiGraph): A directed graph object from the NetworkX library representing the workflow graph.
|
||||
"""
|
||||
|
||||
nodes: Dict[str, Node] = Field(default_factory=dict)
|
||||
edges: List[Edge] = Field(default_factory=list)
|
||||
entry_points: List[str] = Field(default_factory=list)
|
||||
end_points: List[str] = Field(default_factory=list)
|
||||
graph: nx.DiGraph = Field(default_factory=nx.DiGraph, exclude=True)
|
||||
max_loops: int = 1
|
||||
|
||||
class Config:
|
||||
arbitrary_types_allowed = True
|
||||
|
||||
def add_node(self, node: Node):
|
||||
"""
|
||||
Adds a node to the workflow graph.
|
||||
|
||||
Args:
|
||||
node (Node): The node object to be added.
|
||||
|
||||
Raises:
|
||||
ValueError: If a node with the same ID already exists in the graph.
|
||||
"""
|
||||
try:
|
||||
if node.id in self.nodes:
|
||||
raise ValueError(f"Node with id {node.id} already exists.")
|
||||
self.nodes[node.id] = node
|
||||
self.graph.add_node(
|
||||
node.id,
|
||||
type=node.type,
|
||||
callable=node.callable,
|
||||
agent=node.agent,
|
||||
)
|
||||
except Exception as e:
|
||||
logger.info(f"Error in adding node to the workflow: {e}")
|
||||
raise e
|
||||
|
||||
def add_edge(self, edge: Edge):
|
||||
"""
|
||||
Adds an edge to the workflow graph.
|
||||
|
||||
Args:
|
||||
edge (Edge): The edge object to be added.
|
||||
|
||||
Raises:
|
||||
ValueError: If either the source or target node of the edge does not exist in the graph.
|
||||
"""
|
||||
if edge.source not in self.nodes or edge.target not in self.nodes:
|
||||
raise ValueError(
|
||||
"Both source and target nodes must exist before adding an edge."
|
||||
)
|
||||
self.edges.append(edge)
|
||||
self.graph.add_edge(edge.source, edge.target)
|
||||
|
||||
def set_entry_points(self, entry_points: List[str]):
|
||||
"""
|
||||
Sets the entry points of the workflow graph.
|
||||
|
||||
Args:
|
||||
entry_points (List[str]): A list of node IDs to be set as entry points.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the specified node IDs do not exist in the graph.
|
||||
"""
|
||||
for node_id in entry_points:
|
||||
if node_id not in self.nodes:
|
||||
raise ValueError(f"Node with id {node_id} does not exist.")
|
||||
self.entry_points = entry_points
|
||||
|
||||
def set_end_points(self, end_points: List[str]):
|
||||
"""
|
||||
Sets the end points of the workflow graph.
|
||||
|
||||
Args:
|
||||
end_points (List[str]): A list of node IDs to be set as end points.
|
||||
|
||||
Raises:
|
||||
ValueError: If any of the specified node IDs do not exist in the graph.
|
||||
"""
|
||||
for node_id in end_points:
|
||||
if node_id not in self.nodes:
|
||||
raise ValueError(f"Node with id {node_id} does not exist.")
|
||||
self.end_points = end_points
|
||||
|
||||
def visualize(self) -> str:
|
||||
"""
|
||||
Generates a string representation of the workflow graph in the Mermaid syntax.
|
||||
|
||||
Returns:
|
||||
str: The Mermaid string representation of the workflow graph.
|
||||
"""
|
||||
mermaid_str = "graph TD\n"
|
||||
for node_id, node in self.nodes.items():
|
||||
mermaid_str += f" {node_id}[{node_id}]\n"
|
||||
for edge in self.edges:
|
||||
mermaid_str += f" {edge.source} --> {edge.target}\n"
|
||||
return mermaid_str
|
||||
|
||||
def run(self, task: str = None, *args, **kwargs) -> Dict[str, Any]:
|
||||
"""
|
||||
Function to run the workflow graph.
|
||||
|
||||
Args:
|
||||
task (str): The task to be executed by the workflow.
|
||||
*args: Variable length argument list.
|
||||
**kwargs: Arbitrary keyword arguments.
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: A dictionary containing the results of the execution.
|
||||
|
||||
Raises:
|
||||
ValueError: If no entry points or end points are defined in the graph.
|
||||
|
||||
"""
|
||||
try:
|
||||
loop = 0
|
||||
while loop < self.max_loops:
|
||||
# Ensure all nodes and edges are valid
|
||||
if not self.entry_points:
|
||||
raise ValueError(
|
||||
"At least one entry point must be defined."
|
||||
)
|
||||
if not self.end_points:
|
||||
raise ValueError(
|
||||
"At least one end point must be defined."
|
||||
)
|
||||
|
||||
# Perform a topological sort of the graph to ensure proper execution order
|
||||
sorted_nodes = list(nx.topological_sort(self.graph))
|
||||
|
||||
# Initialize execution state
|
||||
execution_results = {}
|
||||
|
||||
for node_id in sorted_nodes:
|
||||
node = self.nodes[node_id]
|
||||
if node.type == NodeType.TASK:
|
||||
print(f"Executing task: {node_id}")
|
||||
result = node.callable()
|
||||
elif node.type == NodeType.AGENT:
|
||||
print(f"Executing agent: {node_id}")
|
||||
result = node.agent.run(task, *args, **kwargs)
|
||||
execution_results[node_id] = result
|
||||
|
||||
loop += 1
|
||||
|
||||
return execution_results
|
||||
except Exception as e:
|
||||
logger.info(f"Error in running the workflow: {e}")
|
||||
raise e
|
||||
|
||||
|
||||
# # Example usage
|
||||
# if __name__ == "__main__":
|
||||
# from swarms import Agent, OpenAIChat
|
||||
# import os
|
||||
# from dotenv import load_dotenv
|
||||
|
||||
# load_dotenv()
|
||||
|
||||
# api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
# llm = OpenAIChat(
|
||||
# temperature=0.5, openai_api_key=api_key, max_tokens=4000
|
||||
# )
|
||||
# agent1 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
|
||||
# agent2 = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
|
||||
|
||||
# def sample_task():
|
||||
# print("Running sample task")
|
||||
# return "Task completed"
|
||||
|
||||
# wf_graph = GraphWorkflow()
|
||||
# wf_graph.add_node(Node(id="agent1", type=NodeType.AGENT, agent=agent1))
|
||||
# wf_graph.add_node(Node(id="agent2", type=NodeType.AGENT, agent=agent2))
|
||||
# wf_graph.add_node(
|
||||
# Node(id="task1", type=NodeType.TASK, callable=sample_task)
|
||||
# )
|
||||
# wf_graph.add_edge(Edge(source="agent1", target="task1"))
|
||||
# wf_graph.add_edge(Edge(source="agent2", target="task1"))
|
||||
|
||||
# wf_graph.set_entry_points(["agent1", "agent2"])
|
||||
# wf_graph.set_end_points(["task1"])
|
||||
|
||||
# print(wf_graph.visualize())
|
||||
|
||||
# # Run the workflow
|
||||
# results = wf_graph.run()
|
||||
# print("Execution results:", results)
|
Loading…
Reference in new issue