extensive error habdlong

Former-commit-id: c8e07e464d
WorkerULTRANODE
Kye 2 years ago
parent 1e22d9b20a
commit 07d93c33a0

@ -9,8 +9,8 @@ from langchain.chat_models.base import BaseChatModel
from langchain.schema import BaseOutputParser
from langchain.callbacks.base import BaseCallbackManager
from .chat_agent import ConversationalChatAgent
from .llm import ChatOpenAI
from .ConversationalChatAgent import ConversationalChatAgent
from .ChatOpenAI import ChatOpenAI
from .EvalOutputParser import EvalOutputParser

@ -10,7 +10,7 @@ from langchain.memory.chat_memory import BaseChatMemory
from swarms.tools.main import BaseToolSet, ToolsFactory
from .AgentBuilder import AgentBuilder
from .callback import EVALCallbackHandler, ExecutionTracingCallbackHandler
from .Calback import EVALCallbackHandler, ExecutionTracingCallbackHandler
CallbackManager.set_handler(handler=EVALCallbackHandler())

@ -1,4 +1,5 @@
from typing import Any, List, Optional, Sequence, Tuple
import logging
from langchain.agents.agent import Agent
from langchain.callbacks.base import BaseCallbackManager
@ -22,6 +23,7 @@ from langchain.tools.base import BaseTool
from swarms.prompts.prompts import EVAL_TOOL_RESPONSE
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class ConversationalChatAgent(Agent):
"""An agent designed to hold a conversation in addition to using tools."""
@ -51,6 +53,17 @@ class ConversationalChatAgent(Agent):
output_parser: BaseOutputParser,
input_variables: Optional[List[str]] = None,
) -> BasePromptTemplate:
if not isinstance(tools, Sequence):
raise TypeError("Tools must be a sequence")
if not isinstance(system_message, str):
raise TypeError("System message must be a string")
if not isinstance(human_message, str):
raise TypeError("Human message must be a string")
if not isinstance(output_parser, BaseOutputParser):
raise TypeError("Output parser must be an instance of BaseOutputParser")
if input_variables and not isinstance(input_variables, list):
raise TypeError("Input variables must be a list")
tool_strings = "\n".join(
[f"> {tool.name}: {tool.description}" for tool in tools]
)
@ -75,7 +88,8 @@ class ConversationalChatAgent(Agent):
try:
response = self.output_parser.parse(llm_output)
return response["action"], response["action_input"]
except Exception:
except Exception as e:
logging.error(f"Error while extracting tool and input: {str(e)}")
raise ValueError(f"Could not parse LLM output: {llm_output}")
def _construct_scratchpad(
@ -118,9 +132,13 @@ class ConversationalChatAgent(Agent):
callback_manager=callback_manager,
)
tool_names = [tool.name for tool in tools]
try:
return cls(
llm_chain=llm_chain,
allowed_tools=tool_names,
output_parser=output_parser,
**kwargs,
)
except Exception as e:
logging.error(f"Error while creating agent from LLM and tools: {str(e)}")
raise e
Loading…
Cancel
Save