|
|
@ -105,6 +105,8 @@ class Flow:
|
|
|
|
system_message: str = FLOW_SYSTEM_PROMPT,
|
|
|
|
system_message: str = FLOW_SYSTEM_PROMPT,
|
|
|
|
# tools: List[BaseTool] = None,
|
|
|
|
# tools: List[BaseTool] = None,
|
|
|
|
dynamic_temperature: bool = False,
|
|
|
|
dynamic_temperature: bool = False,
|
|
|
|
|
|
|
|
saved_state: Optional[str] = None,
|
|
|
|
|
|
|
|
autosave: bool = False,
|
|
|
|
**kwargs: Any,
|
|
|
|
**kwargs: Any,
|
|
|
|
):
|
|
|
|
):
|
|
|
|
self.llm = llm
|
|
|
|
self.llm = llm
|
|
|
@ -124,6 +126,9 @@ class Flow:
|
|
|
|
# self.tools = tools
|
|
|
|
# self.tools = tools
|
|
|
|
self.system_message = system_message
|
|
|
|
self.system_message = system_message
|
|
|
|
self.name = name
|
|
|
|
self.name = name
|
|
|
|
|
|
|
|
self.saved_state = saved_state
|
|
|
|
|
|
|
|
self.autosave = autosave
|
|
|
|
|
|
|
|
self.response_filters = []
|
|
|
|
|
|
|
|
|
|
|
|
def provide_feedback(self, feedback: str) -> None:
|
|
|
|
def provide_feedback(self, feedback: str) -> None:
|
|
|
|
"""Allow users to provide feedback on the responses."""
|
|
|
|
"""Allow users to provide feedback on the responses."""
|
|
|
@ -206,7 +211,7 @@ class Flow:
|
|
|
|
|
|
|
|
|
|
|
|
print(dashboard)
|
|
|
|
print(dashboard)
|
|
|
|
|
|
|
|
|
|
|
|
def run(self, task: str, save: bool = True, **kwargs):
|
|
|
|
def run(self, task: str, **kwargs):
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
Run the autonomous agent loop
|
|
|
|
Run the autonomous agent loop
|
|
|
|
|
|
|
|
|
|
|
@ -220,15 +225,15 @@ class Flow:
|
|
|
|
4. If stopping condition is not met, generate a response
|
|
|
|
4. If stopping condition is not met, generate a response
|
|
|
|
5. Repeat until stopping condition is met or max_loops is reached
|
|
|
|
5. Repeat until stopping condition is met or max_loops is reached
|
|
|
|
|
|
|
|
|
|
|
|
Example:
|
|
|
|
|
|
|
|
>>> out = flow.run("Generate a 10,000 word blog on health and wellness.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""
|
|
|
|
"""
|
|
|
|
# Start with a new history or continue from the last saved state
|
|
|
|
# Restore from saved state if provided, ortherwise start with a new history
|
|
|
|
if not self.memory or not self.memory[-1]:
|
|
|
|
# if self.saved_state:
|
|
|
|
history = [f"Human: {task}"]
|
|
|
|
# self.load_state(self.saved_state)
|
|
|
|
else:
|
|
|
|
# history = self.memory[-1]
|
|
|
|
history = self.memory[-1]
|
|
|
|
# print(f"Loaded state from {self.saved_state}")
|
|
|
|
|
|
|
|
# else:
|
|
|
|
|
|
|
|
# history = [f"Human: {task}"]
|
|
|
|
|
|
|
|
# self.memory.append(history)
|
|
|
|
|
|
|
|
|
|
|
|
response = task
|
|
|
|
response = task
|
|
|
|
history = [f"Human: {task}"]
|
|
|
|
history = [f"Human: {task}"]
|
|
|
@ -237,12 +242,9 @@ class Flow:
|
|
|
|
if self.dashboard:
|
|
|
|
if self.dashboard:
|
|
|
|
self.print_dashboard(task)
|
|
|
|
self.print_dashboard(task)
|
|
|
|
|
|
|
|
|
|
|
|
# Start or continue the loop process
|
|
|
|
for i in range(self.max_loops):
|
|
|
|
for i in range(len(history), self.max_loops):
|
|
|
|
|
|
|
|
print(colored(f"\nLoop {i+1} of {self.max_loops}", "blue"))
|
|
|
|
print(colored(f"\nLoop {i+1} of {self.max_loops}", "blue"))
|
|
|
|
print("\n")
|
|
|
|
print("\n")
|
|
|
|
response = history[-1].split(": ", 1)[-1] # Get the last response
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if self._check_stopping_condition(response) or parse_done_token(response):
|
|
|
|
if self._check_stopping_condition(response) or parse_done_token(response):
|
|
|
|
break
|
|
|
|
break
|
|
|
|
|
|
|
|
|
|
|
@ -254,8 +256,8 @@ class Flow:
|
|
|
|
while attempt < self.retry_attempts:
|
|
|
|
while attempt < self.retry_attempts:
|
|
|
|
try:
|
|
|
|
try:
|
|
|
|
response = self.llm(
|
|
|
|
response = self.llm(
|
|
|
|
self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response)
|
|
|
|
self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response),
|
|
|
|
** kwargs,
|
|
|
|
**kwargs,
|
|
|
|
)
|
|
|
|
)
|
|
|
|
# print(f"Next query: {response}")
|
|
|
|
# print(f"Next query: {response}")
|
|
|
|
# break
|
|
|
|
# break
|
|
|
@ -277,8 +279,8 @@ class Flow:
|
|
|
|
time.sleep(self.loop_interval)
|
|
|
|
time.sleep(self.loop_interval)
|
|
|
|
self.memory.append(history)
|
|
|
|
self.memory.append(history)
|
|
|
|
|
|
|
|
|
|
|
|
if save:
|
|
|
|
# if self.autosave:
|
|
|
|
self.save("flow_history.json")
|
|
|
|
# self.save_state("flow_state.json")
|
|
|
|
|
|
|
|
|
|
|
|
return response # , history
|
|
|
|
return response # , history
|
|
|
|
|
|
|
|
|
|
|
@ -353,8 +355,8 @@ class Flow:
|
|
|
|
time.sleep(self.loop_interval)
|
|
|
|
time.sleep(self.loop_interval)
|
|
|
|
self.memory.append(history)
|
|
|
|
self.memory.append(history)
|
|
|
|
|
|
|
|
|
|
|
|
if save:
|
|
|
|
# if save:
|
|
|
|
self.save_state("flow_history.json")
|
|
|
|
# self.save_state("flow_history.json")
|
|
|
|
|
|
|
|
|
|
|
|
return response # , history
|
|
|
|
return response # , history
|
|
|
|
|
|
|
|
|
|
|
@ -409,7 +411,13 @@ class Flow:
|
|
|
|
json.dump(self.memory, f)
|
|
|
|
json.dump(self.memory, f)
|
|
|
|
print(f"Saved flow history to {file_path}")
|
|
|
|
print(f"Saved flow history to {file_path}")
|
|
|
|
|
|
|
|
|
|
|
|
def load(self, file_path) -> None:
|
|
|
|
def load(self, file_path: str):
|
|
|
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
Load the flow history from a file.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
|
|
|
file_path (str): The path to the file containing the saved flow history.
|
|
|
|
|
|
|
|
"""
|
|
|
|
with open(file_path, "r") as f:
|
|
|
|
with open(file_path, "r") as f:
|
|
|
|
self.memory = json.load(f)
|
|
|
|
self.memory = json.load(f)
|
|
|
|
print(f"Loaded flow history from {file_path}")
|
|
|
|
print(f"Loaded flow history from {file_path}")
|
|
|
@ -660,10 +668,6 @@ class Flow:
|
|
|
|
with open(file_path, "r") as f:
|
|
|
|
with open(file_path, "r") as f:
|
|
|
|
state = json.load(f)
|
|
|
|
state = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
# Assuming 'llm_class' is a class reference to the language
|
|
|
|
|
|
|
|
# llm_params = state.get("llm_params", {})
|
|
|
|
|
|
|
|
# self.llm = self.llm(**llm_params)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# Restore other saved attributes
|
|
|
|
# Restore other saved attributes
|
|
|
|
self.memory = state.get("memory", [])
|
|
|
|
self.memory = state.get("memory", [])
|
|
|
|
self.max_loops = state.get("max_loops", 5)
|
|
|
|
self.max_loops = state.get("max_loops", 5)
|
|
|
|