parent
e9c712f8f3
commit
11b02a5d13
@ -0,0 +1,61 @@
|
|||||||
|
# !pip install --upgrade swarms==2.0.6
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
from swarms.models import OpenAIChat
|
||||||
|
from swarms.models.nougat import Nougat
|
||||||
|
from swarms.structs import Flow
|
||||||
|
from swarms.structs.sequential_workflow import SequentialWorkflow
|
||||||
|
|
||||||
|
# # URL of the image of the financial document
|
||||||
|
IMAGE_OF_FINANCIAL_DOC_URL = "bank_statement_2.jpg"
|
||||||
|
|
||||||
|
# Example usage
|
||||||
|
api_key = "" # Your actual API key here
|
||||||
|
|
||||||
|
# Initialize the OCR model
|
||||||
|
def ocr_model(img: str):
|
||||||
|
ocr = Nougat()
|
||||||
|
analyze_finance_docs = ocr(img)
|
||||||
|
return str(analyze_finance_docs)
|
||||||
|
|
||||||
|
# Initialize the language flow
|
||||||
|
llm = OpenAIChat(
|
||||||
|
model_name="gpt-4-turbo",
|
||||||
|
openai_api_key=api_key,
|
||||||
|
temperature=0.5,
|
||||||
|
max_tokens=3000,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create a prompt for the language model
|
||||||
|
def summary_agent_prompt(analyzed_doc: str):
|
||||||
|
analyzed_doc = ocr_model(img=analyzed_doc)
|
||||||
|
return f"""
|
||||||
|
Generate an actionable summary of this financial document, provide bulletpoints:
|
||||||
|
|
||||||
|
Here is the Analyzed Document:
|
||||||
|
---
|
||||||
|
{analyzed_doc}
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Initialize the Flow with the language flow
|
||||||
|
flow1 = Flow(llm=llm, max_loops=1, dashboard=False)
|
||||||
|
|
||||||
|
# Create another Flow for a different task
|
||||||
|
flow2 = Flow(llm=llm, max_loops=1, dashboard=False)
|
||||||
|
|
||||||
|
# Create the workflow
|
||||||
|
workflow = SequentialWorkflow(max_loops=1)
|
||||||
|
|
||||||
|
# Add tasks to the workflow
|
||||||
|
workflow.add(summary_agent_prompt(IMAGE_OF_FINANCIAL_DOC_URL), flow1)
|
||||||
|
|
||||||
|
# Suppose the next task takes the output of the first task as input
|
||||||
|
workflow.add("Provide an actionable step by step plan on how to cut costs from the analyzed financial document.", flow2)
|
||||||
|
|
||||||
|
# Run the workflow
|
||||||
|
workflow.run()
|
||||||
|
|
||||||
|
# Output the results
|
||||||
|
for task in workflow.tasks:
|
||||||
|
print(f"Task: {task.description}, Result: {task.result}")
|
After Width: | Height: | Size: 538 KiB |
@ -0,0 +1,101 @@
|
|||||||
|
import re
|
||||||
|
from concurrent.futures import ThreadPoolExecutor, as_completed
|
||||||
|
from swarms.models import OpenAIChat
|
||||||
|
|
||||||
|
|
||||||
|
class AutoTempAgent:
|
||||||
|
"""
|
||||||
|
AutoTemp is a tool for automatically selecting the best temperature setting for a given task.
|
||||||
|
|
||||||
|
Flow:
|
||||||
|
1. Generate outputs at a range of temperature settings.
|
||||||
|
2. Evaluate each output using the default temperature setting.
|
||||||
|
3. Select the best output based on the evaluation score.
|
||||||
|
4. Return the best output.
|
||||||
|
|
||||||
|
|
||||||
|
Args:
|
||||||
|
temperature (float, optional): The default temperature setting to use. Defaults to 0.5.
|
||||||
|
api_key (str, optional): Your OpenAI API key. Defaults to None.
|
||||||
|
alt_temps ([type], optional): A list of alternative temperature settings to try. Defaults to None.
|
||||||
|
auto_select (bool, optional): If True, the best temperature setting will be automatically selected. Defaults to True.
|
||||||
|
max_workers (int, optional): The maximum number of workers to use when generating outputs. Defaults to 6.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
[type]: [description]
|
||||||
|
|
||||||
|
Examples:
|
||||||
|
>>> from swarms.demos.autotemp import AutoTemp
|
||||||
|
>>> autotemp = AutoTemp()
|
||||||
|
>>> autotemp.run("Generate a 10,000 word blog on mental clarity and the benefits of meditation.", "0.4,0.6,0.8,1.0,1.2,1.4")
|
||||||
|
Best AutoTemp Output (Temp 0.4 | Score: 100.0):
|
||||||
|
Generate a 10,000 word blog on mental clarity and the benefits of meditation.
|
||||||
|
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
temperature: float = 0.5,
|
||||||
|
api_key: str = None,
|
||||||
|
alt_temps=None,
|
||||||
|
auto_select=True,
|
||||||
|
max_workers=6,
|
||||||
|
):
|
||||||
|
self.alt_temps = alt_temps if alt_temps else [0.4, 0.6, 0.8, 1.0, 1.2, 1.4]
|
||||||
|
self.auto_select = auto_select
|
||||||
|
self.max_workers = max_workers
|
||||||
|
self.temperature = temperature
|
||||||
|
self.alt_temps = alt_temps
|
||||||
|
self.llm = OpenAIChat(
|
||||||
|
openai_api_key=api_key,
|
||||||
|
temperature=temperature,
|
||||||
|
)
|
||||||
|
|
||||||
|
def evaluate_output(self, output: str):
|
||||||
|
"""Evaluate the output using the default temperature setting."""
|
||||||
|
eval_prompt = f"""
|
||||||
|
Evaluate the following output which was generated at a temperature setting of {self.temperature}.
|
||||||
|
Provide a precise score from 0.0 to 100.0, considering the criteria of relevance, clarity, utility, pride, and delight.
|
||||||
|
|
||||||
|
Output to evaluate:
|
||||||
|
---
|
||||||
|
{output}
|
||||||
|
---
|
||||||
|
"""
|
||||||
|
score_text = self.llm(prompt=eval_prompt)
|
||||||
|
score_match = re.search(r"\b\d+(\.\d)?\b", score_text)
|
||||||
|
return round(float(score_match.group()), 1) if score_match else 0.0
|
||||||
|
|
||||||
|
def run(self, task: str, temperature_string):
|
||||||
|
"""Run the AutoTemp agent."""
|
||||||
|
temperature_list = [
|
||||||
|
float(temp.strip()) for temp in temperature_string.split(",")
|
||||||
|
]
|
||||||
|
outputs = {}
|
||||||
|
scores = {}
|
||||||
|
with ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
||||||
|
future_to_temp = {
|
||||||
|
executor.submit(self.llm.generate, task, temp): temp
|
||||||
|
for temp in temperature_list
|
||||||
|
}
|
||||||
|
for future in as_completed(future_to_temp):
|
||||||
|
temp = future_to_temp[future]
|
||||||
|
output_text = future.result()
|
||||||
|
outputs[temp] = output_text
|
||||||
|
scores[temp] = self.evaluate_output(output_text, temp)
|
||||||
|
|
||||||
|
if not scores:
|
||||||
|
return "No valid outputs generated.", None
|
||||||
|
|
||||||
|
sorted_scores = sorted(scores.items(), key=lambda item: item[1], reverse=True)
|
||||||
|
best_temp, best_score = sorted_scores[0]
|
||||||
|
best_output = outputs[best_temp]
|
||||||
|
|
||||||
|
return (
|
||||||
|
f"Best AutoTemp Output (Temp {best_temp} | Score: {best_score}):\n{best_output}"
|
||||||
|
if self.auto_select
|
||||||
|
else "\n".join(
|
||||||
|
f"Temp {temp} | Score: {score}:\n{outputs[temp]}"
|
||||||
|
for temp, score in sorted_scores
|
||||||
|
)
|
||||||
|
)
|
Loading…
Reference in new issue