pull/11/head
Kye 2 years ago
parent 001d2f5dee
commit 13f65f8f80

@ -0,0 +1,386 @@
# class Swarms:
# def __init__(self, openai_api_key):
# self.openai_api_key = openai_api_key
# def initialize_llm(self, llm_class, temperature=0.5):
# # Initialize language model
# return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
# def initialize_tools(self, llm_class):
# llm = self.initialize_llm(llm_class)
# # Initialize tools
# web_search = DuckDuckGoSearchRun()
# tools = [
# web_search,
# WriteFileTool(root_dir=ROOT_DIR),
# ReadFileTool(root_dir=ROOT_DIR),
# process_csv,
# WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# # RequestsGet()
# Tool(name="RequestsGet", func=RequestsGet.get, description="A portal to the internet, Use this when you need to get specific content from a website. Input should be a url (i.e. https://www.google.com). The output will be the text response of the GET request."),
# # CodeEditor,
# # Terminal,
# # RequestsGet,
# # ExitConversation
# #code editor + terminal editor + visual agent
# # Give the worker node itself as a tool
# ]
# assert tools is not None, "tools is not initialized"
# return tools
# def initialize_vectorstore(self):
# # Initialize vector store
# embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
# embedding_size = 1536
# index = faiss.IndexFlatL2(embedding_size)
# return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
# def initialize_worker_node(self, worker_tools, vectorstore):
# # Initialize worker node
# llm = self.initialize_llm(ChatOpenAI)
# worker_node = WorkerNode(llm=llm, tools=worker_tools, vectorstore=vectorstore)
# worker_node.create_agent(ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={})
# worker_node_tool = Tool(name="WorkerNode AI Agent", func=worker_node.run, description="Input: an objective with a todo list for that objective. Output: your task completed: Please be very clear what the objective and task instructions are. The Swarm worker agent is Useful for when you need to spawn an autonomous agent instance as a worker to accomplish any complex tasks, it can search the internet or write code or spawn child multi-modality models to process and generate images and text or audio and so on")
# return worker_node_tool
# def initialize_boss_node(self, vectorstore, worker_node):
# # Initialize boss node
# llm = self.initialize_llm(OpenAI)
# todo_prompt = PromptTemplate.from_template("You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating an worker to help you accomplish your task. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn an worker agent after creating a plan and pass the objective and plan to the worker agent.")
# todo_chain = LLMChain(llm=llm, prompt=todo_prompt)
# tools = [
# Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!"),
# worker_node
# ]
# suffix = """Question: {task}\n{agent_scratchpad}"""
# prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
# prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
# llm_chain = LLMChain(llm=llm, prompt=prompt)
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
# agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
# # return BossNode(return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
# return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
# def run_swarms(self, objective, run_as=None):
# try:
# # Run the swarm with the given objective
# worker_tools = self.initialize_tools(OpenAI)
# assert worker_tools is not None, "worker_tools is not initialized"
# vectorstore = self.initialize_vectorstore()
# worker_node = self.initialize_worker_node(worker_tools, vectorstore)
# if run_as.lower() == 'worker':
# tool_input = {'prompt': objective}
# return worker_node.run(tool_input)
# else:
# boss_node = self.initialize_boss_node(vectorstore, worker_node)
# task = boss_node.create_task(objective)
# return boss_node.execute_task(task)
# except Exception as e:
# logging.error(f"An error occurred in run_swarms: {e}")
# raise
#omni agent ===> working
# class Swarms:
# def __init__(self,
# openai_api_key,
# # omni_api_key=None,
# # omni_api_endpoint=None,
# # omni_api_type=None
# ):
# self.openai_api_key = openai_api_key
# # self.omni_api_key = omni_api_key
# # self.omni_api_endpoint = omni_api_endpoint
# # self.omni_api_key = omni_api_type
# # if omni_api_key and omni_api_endpoint and omni_api_type:
# # self.omni_worker_agent = OmniWorkerAgent(omni_api_key, omni_api_endpoint, omni_api_type)
# # else:
# # self.omni_worker_agent = None
# def initialize_llm(self):
# # Initialize language model
# return ChatOpenAI(model_name="gpt-4", temperature=1.0, openai_api_key=self.openai_api_key)
# def initialize_tools(self, llm):
# # Initialize tools
# web_search = DuckDuckGoSearchRun()
# tools = [
# web_search,
# WriteFileTool(root_dir=ROOT_DIR),
# ReadFileTool(root_dir=ROOT_DIR),
# process_csv,
# WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# ]
# # if self.omni_worker_agent:
# # tools.append(self.omni_worker_agent.chat) #add omniworker agent class
# return tools
# def initialize_vectorstore(self):
# # Initialize vector store
# embeddings_model = OpenAIEmbeddings()
# embedding_size = 1536
# index = faiss.IndexFlatL2(embedding_size)
# return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
# def initialize_worker_node(self, llm, worker_tools, vectorstore):
# # Initialize worker node
# worker_node = WorkerNode(llm=llm, tools=worker_tools, vectorstore=vectorstore)
# worker_node.create_agent(ai_name="AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={})
# return worker_node
# def initialize_boss_node(self, llm, vectorstore, worker_node):
# # Initialize boss node
# todo_prompt = PromptTemplate.from_template("You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}")
# todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)
# tools = [
# Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!"),
# worker_node,
# ]
# suffix = """Question: {task}\n{agent_scratchpad}"""
# prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n"""
# prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
# llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
# agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
# return BossNode(self.openai_api_key, llm, vectorstore, agent_executor, verbose=True, max_iterations=5)
# def run_swarms(self, objective):
# # Run the swarm with the given objective
# llm = self.initialize_llm()
# worker_tools = self.initialize_tools(llm)
# vectorstore = self.initialize_vectorstore()
# worker_node = self.initialize_worker_node(llm, worker_tools, vectorstore)
# boss_node = self.initialize_boss_node(llm, vectorstore, worker_node)
# task = boss_node.create_task(objective)
# boss_node.execute_task(task)
# worker_node.run_agent(objective)
# class Swarms:
# def __init__(self, num_nodes: int, llm: BaseLLM, self_scaling: bool):
# self.nodes = [WorkerNode(llm) for _ in range(num_nodes)]
# self.self_scaling = self_scaling
# def add_worker(self, llm: BaseLLM):
# self.nodes.append(WorkerNode(llm))
# def remove_workers(self, index: int):
# self.nodes.pop(index)
# def execute(self, task):
# #placeholer for main execution logic
# pass
# def scale(self):
# #placeholder for self scaling logic
# pass
#special classes
# class HierarchicalSwarms(Swarms):
# def execute(self, task):
# pass
# class CollaborativeSwarms(Swarms):
# def execute(self, task):
# pass
# class CompetitiveSwarms(Swarms):
# def execute(self, task):
# pass
# class MultiAgentDebate(Swarms):
# def execute(self, task):
# pass
#======================================> WorkerNode
# class MetaWorkerNode:
# def __init__(self, llm, tools, vectorstore):
# self.llm = llm
# self.tools = tools
# self.vectorstore = vectorstore
# self.agent = None
# self.meta_chain = None
# def init_chain(self, instructions):
# self.agent = WorkerNode(self.llm, self.tools, self.vectorstore)
# self.agent.create_agent("Assistant", "Assistant Role", False, {})
# def initialize_meta_chain():
# meta_template = """
# Assistant has just had the below interactions with a User. Assistant followed their "Instructions" closely. Your job is to critique the Assistant's performance and then revise the Instructions so that Assistant would quickly and correctly respond in the future.
# ####
# {chat_history}
# ####
# Please reflect on these interactions.
# You should first critique Assistant's performance. What could Assistant have done better? What should the Assistant remember about this user? Are there things this user always wants? Indicate this with "Critique: ...".
# You should next revise the Instructions so that Assistant would quickly and correctly respond in the future. Assistant's goal is to satisfy the user in as few interactions as possible. Assistant will only see the new Instructions, not the interaction history, so anything important must be summarized in the Instructions. Don't forget any important details in the current Instructions! Indicate the new Instructions by "Instructions: ...".
# """
# meta_prompt = PromptTemplate(
# input_variables=["chat_history"], template=meta_template
# )
# meta_chain = LLMChain(
# llm=OpenAI(temperature=0),
# prompt=meta_prompt,
# verbose=True,
# )
# return meta_chain
# def meta_chain(self):
# #define meta template and meta prompting as per your needs
# self.meta_chain = initialize_meta_chain()
# def get_chat_history(chain_memory):
# memory_key = chain_memory.memory_key
# chat_history = chain_memory.load_memory_variables(memory_key)[memory_key]
# return chat_history
# def get_new_instructions(meta_output):
# delimiter = "Instructions: "
# new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter) :]
# return new_instructions
# def main(self, task, max_iters=3, max_meta_iters=5):
# failed_phrase = "task failed"
# success_phrase = "task succeeded"
# key_phrases = [success_phrase, failed_phrase]
# instructions = "None"
# for i in range(max_meta_iters):
# print(f"[Episode {i+1}/{max_meta_iters}]")
# self.initialize_chain(instructions)
# output = self.agent.perform('Assistant', {'request': task})
# for j in range(max_iters):
# print(f"(Step {j+1}/{max_iters})")
# print(f"Assistant: {output}")
# print(f"Human: ")
# human_input = input()
# if any(phrase in human_input.lower() for phrase in key_phrases):
# break
# output = self.agent.perform('Assistant', {'request': human_input})
# if success_phrase in human_input.lower():
# print(f"You succeeded! Thanks for playing!")
# return
# self.initialize_meta_chain()
# meta_output = self.meta_chain.predict(chat_history=self.get_chat_history())
# print(f"Feedback: {meta_output}")
# instructions = self.get_new_instructions(meta_output)
# print(f"New Instructions: {instructions}")
# print("\n" + "#" * 80 + "\n")
# print(f"You failed! Thanks for playing!")
# #init instance of MetaWorkerNode
# meta_worker_node = MetaWorkerNode(llm=OpenAI, tools=tools, vectorstore=vectorstore)
# #specify a task and interact with the agent
# task = "Provide a sysmatic argument for why we should always eat past with olives"
# meta_worker_node.main(task)
####################################################################### => Boss Node
####################################################################### => Boss Node
####################################################################### => Boss Node

@ -1,10 +1,6 @@
from swarms.tools.agent_tools import *
from swarms.agents.workers.WorkerNode import WorkerNode
from swarms.agents.boss.BossNode import BossNode
# from swarms.agents.workers.omni_worker import OmniWorkerAgent
# from swarms.tools.main import RequestsGet, ExitConversation
# visual agent
from swarms.agents.workers.WorkerNode import worker_tool
import logging
@ -30,13 +26,6 @@ class Swarms:
process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# CodeEditor,
# Terminal,
# RequestsGet,
# ExitConversation
#code editor + terminal editor + visual agent
]
assert tools is not None, "tools is not initialized"
return tools
@ -93,430 +82,14 @@ class Swarms:
raise
# usage
def swarm(api_key, objective):
"""
import swarm
api_key = "APIKEY"
objective = "What is the capital of the UK?"
result = swarm(api_key, objective)
print(result) # Prints: "The capital of the UK is London."
"""
swarms = Swarms(api_key)
return swarms.run_swarms(objective)
# # Use the function
# api_key = "APIKEY"
# objective = "What is the capital of the UK?"
# result = swarm(api_key, objective)
# print(result) # Prints: "The capital of the UK is London."
# class Swarms:
# def __init__(self, openai_api_key):
# self.openai_api_key = openai_api_key
# def initialize_llm(self, llm_class, temperature=0.5):
# # Initialize language model
# return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
# def initialize_tools(self, llm_class):
# llm = self.initialize_llm(llm_class)
# # Initialize tools
# web_search = DuckDuckGoSearchRun()
# tools = [
# web_search,
# WriteFileTool(root_dir=ROOT_DIR),
# ReadFileTool(root_dir=ROOT_DIR),
# process_csv,
# WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# # RequestsGet()
# Tool(name="RequestsGet", func=RequestsGet.get, description="A portal to the internet, Use this when you need to get specific content from a website. Input should be a url (i.e. https://www.google.com). The output will be the text response of the GET request."),
# # CodeEditor,
# # Terminal,
# # RequestsGet,
# # ExitConversation
# #code editor + terminal editor + visual agent
# # Give the worker node itself as a tool
# ]
# assert tools is not None, "tools is not initialized"
# return tools
# def initialize_vectorstore(self):
# # Initialize vector store
# embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
# embedding_size = 1536
# index = faiss.IndexFlatL2(embedding_size)
# return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
# def initialize_worker_node(self, worker_tools, vectorstore):
# # Initialize worker node
# llm = self.initialize_llm(ChatOpenAI)
# worker_node = WorkerNode(llm=llm, tools=worker_tools, vectorstore=vectorstore)
# worker_node.create_agent(ai_name="Swarm Worker AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={})
# worker_node_tool = Tool(name="WorkerNode AI Agent", func=worker_node.run, description="Input: an objective with a todo list for that objective. Output: your task completed: Please be very clear what the objective and task instructions are. The Swarm worker agent is Useful for when you need to spawn an autonomous agent instance as a worker to accomplish any complex tasks, it can search the internet or write code or spawn child multi-modality models to process and generate images and text or audio and so on")
# return worker_node_tool
# def initialize_boss_node(self, vectorstore, worker_node):
# # Initialize boss node
# llm = self.initialize_llm(OpenAI)
# todo_prompt = PromptTemplate.from_template("You are a boss planer in a swarm who is an expert at coming up with a todo list for a given objective and then creating an worker to help you accomplish your task. Come up with a todo list for this objective: {objective} and then spawn a worker agent to complete the task for you. Always spawn an worker agent after creating a plan and pass the objective and plan to the worker agent.")
# todo_chain = LLMChain(llm=llm, prompt=todo_prompt)
# tools = [
# Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!"),
# worker_node
# ]
# suffix = """Question: {task}\n{agent_scratchpad}"""
# prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n """
# prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
# llm_chain = LLMChain(llm=llm, prompt=prompt)
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
# agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
# # return BossNode(return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
# return BossNode(llm, vectorstore, agent_executor, max_iterations=5)
# def run_swarms(self, objective, run_as=None):
# try:
# # Run the swarm with the given objective
# worker_tools = self.initialize_tools(OpenAI)
# assert worker_tools is not None, "worker_tools is not initialized"
# vectorstore = self.initialize_vectorstore()
# worker_node = self.initialize_worker_node(worker_tools, vectorstore)
# if run_as.lower() == 'worker':
# tool_input = {'prompt': objective}
# return worker_node.run(tool_input)
# else:
# boss_node = self.initialize_boss_node(vectorstore, worker_node)
# task = boss_node.create_task(objective)
# return boss_node.execute_task(task)
# except Exception as e:
# logging.error(f"An error occurred in run_swarms: {e}")
# raise
#omni agent ===> working
# class Swarms:
# def __init__(self,
# openai_api_key,
# # omni_api_key=None,
# # omni_api_endpoint=None,
# # omni_api_type=None
# ):
# self.openai_api_key = openai_api_key
# # self.omni_api_key = omni_api_key
# # self.omni_api_endpoint = omni_api_endpoint
# # self.omni_api_key = omni_api_type
# # if omni_api_key and omni_api_endpoint and omni_api_type:
# # self.omni_worker_agent = OmniWorkerAgent(omni_api_key, omni_api_endpoint, omni_api_type)
# # else:
# # self.omni_worker_agent = None
# def initialize_llm(self):
# # Initialize language model
# return ChatOpenAI(model_name="gpt-4", temperature=1.0, openai_api_key=self.openai_api_key)
# def initialize_tools(self, llm):
# # Initialize tools
# web_search = DuckDuckGoSearchRun()
# tools = [
# web_search,
# WriteFileTool(root_dir=ROOT_DIR),
# ReadFileTool(root_dir=ROOT_DIR),
# process_csv,
# WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
# ]
# # if self.omni_worker_agent:
# # tools.append(self.omni_worker_agent.chat) #add omniworker agent class
# return tools
# def initialize_vectorstore(self):
# # Initialize vector store
# embeddings_model = OpenAIEmbeddings()
# embedding_size = 1536
# index = faiss.IndexFlatL2(embedding_size)
# return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
# def initialize_worker_node(self, llm, worker_tools, vectorstore):
# # Initialize worker node
# worker_node = WorkerNode(llm=llm, tools=worker_tools, vectorstore=vectorstore)
# worker_node.create_agent(ai_name="AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={})
# return worker_node
# def initialize_boss_node(self, llm, vectorstore, worker_node):
# # Initialize boss node
# todo_prompt = PromptTemplate.from_template("You are a planner who is an expert at coming up with a todo list for a given objective. Come up with a todo list for this objective: {objective}")
# todo_chain = LLMChain(llm=OpenAI(temperature=0), prompt=todo_prompt)
# tools = [
# Tool(name="TODO", func=todo_chain.run, description="useful for when you need to come up with todo lists. Input: an objective to create a todo list for. Output: a todo list for that objective. Please be very clear what the objective is!"),
# worker_node,
# ]
# suffix = """Question: {task}\n{agent_scratchpad}"""
# prefix = """You are an Boss in a swarm who performs one task based on the following objective: {objective}. Take into account these previously completed tasks: {context}.\n"""
# prompt = ZeroShotAgent.create_prompt(tools, prefix=prefix, suffix=suffix, input_variables=["objective", "task", "context", "agent_scratchpad"],)
# llm_chain = LLMChain(llm=OpenAI(temperature=0), prompt=prompt)
# agent = ZeroShotAgent(llm_chain=llm_chain, allowed_tools=[tool.name for tool in tools])
# agent_executor = AgentExecutor.from_agent_and_tools(agent=agent, tools=tools, verbose=True)
# return BossNode(self.openai_api_key, llm, vectorstore, agent_executor, verbose=True, max_iterations=5)
# def run_swarms(self, objective):
# # Run the swarm with the given objective
# llm = self.initialize_llm()
# worker_tools = self.initialize_tools(llm)
# vectorstore = self.initialize_vectorstore()
# worker_node = self.initialize_worker_node(llm, worker_tools, vectorstore)
# boss_node = self.initialize_boss_node(llm, vectorstore, worker_node)
# task = boss_node.create_task(objective)
# boss_node.execute_task(task)
# worker_node.run_agent(objective)
# class Swarms:
# def __init__(self, num_nodes: int, llm: BaseLLM, self_scaling: bool):
# self.nodes = [WorkerNode(llm) for _ in range(num_nodes)]
# self.self_scaling = self_scaling
# def add_worker(self, llm: BaseLLM):
# self.nodes.append(WorkerNode(llm))
# def remove_workers(self, index: int):
# self.nodes.pop(index)
# def execute(self, task):
# #placeholer for main execution logic
# pass
# def scale(self):
# #placeholder for self scaling logic
# pass
#special classes
# class HierarchicalSwarms(Swarms):
# def execute(self, task):
# pass
# class CollaborativeSwarms(Swarms):
# def execute(self, task):
# pass
# class CompetitiveSwarms(Swarms):
# def execute(self, task):
# pass
# class MultiAgentDebate(Swarms):
# def execute(self, task):
# pass
#======================================> WorkerNode
# class MetaWorkerNode:
# def __init__(self, llm, tools, vectorstore):
# self.llm = llm
# self.tools = tools
# self.vectorstore = vectorstore
# self.agent = None
# self.meta_chain = None
# def init_chain(self, instructions):
# self.agent = WorkerNode(self.llm, self.tools, self.vectorstore)
# self.agent.create_agent("Assistant", "Assistant Role", False, {})
# def initialize_meta_chain():
# meta_template = """
# Assistant has just had the below interactions with a User. Assistant followed their "Instructions" closely. Your job is to critique the Assistant's performance and then revise the Instructions so that Assistant would quickly and correctly respond in the future.
# ####
# {chat_history}
# ####
# Please reflect on these interactions.
# You should first critique Assistant's performance. What could Assistant have done better? What should the Assistant remember about this user? Are there things this user always wants? Indicate this with "Critique: ...".
# You should next revise the Instructions so that Assistant would quickly and correctly respond in the future. Assistant's goal is to satisfy the user in as few interactions as possible. Assistant will only see the new Instructions, not the interaction history, so anything important must be summarized in the Instructions. Don't forget any important details in the current Instructions! Indicate the new Instructions by "Instructions: ...".
# """
# meta_prompt = PromptTemplate(
# input_variables=["chat_history"], template=meta_template
# )
# meta_chain = LLMChain(
# llm=OpenAI(temperature=0),
# prompt=meta_prompt,
# verbose=True,
# )
# return meta_chain
# def meta_chain(self):
# #define meta template and meta prompting as per your needs
# self.meta_chain = initialize_meta_chain()
# def get_chat_history(chain_memory):
# memory_key = chain_memory.memory_key
# chat_history = chain_memory.load_memory_variables(memory_key)[memory_key]
# return chat_history
# def get_new_instructions(meta_output):
# delimiter = "Instructions: "
# new_instructions = meta_output[meta_output.find(delimiter) + len(delimiter) :]
# return new_instructions
# def main(self, task, max_iters=3, max_meta_iters=5):
# failed_phrase = "task failed"
# success_phrase = "task succeeded"
# key_phrases = [success_phrase, failed_phrase]
# instructions = "None"
# for i in range(max_meta_iters):
# print(f"[Episode {i+1}/{max_meta_iters}]")
# self.initialize_chain(instructions)
# output = self.agent.perform('Assistant', {'request': task})
# for j in range(max_iters):
# print(f"(Step {j+1}/{max_iters})")
# print(f"Assistant: {output}")
# print(f"Human: ")
# human_input = input()
# if any(phrase in human_input.lower() for phrase in key_phrases):
# break
# output = self.agent.perform('Assistant', {'request': human_input})
# if success_phrase in human_input.lower():
# print(f"You succeeded! Thanks for playing!")
# return
# self.initialize_meta_chain()
# meta_output = self.meta_chain.predict(chat_history=self.get_chat_history())
# print(f"Feedback: {meta_output}")
# instructions = self.get_new_instructions(meta_output)
# print(f"New Instructions: {instructions}")
# print("\n" + "#" * 80 + "\n")
# print(f"You failed! Thanks for playing!")
# #init instance of MetaWorkerNode
# meta_worker_node = MetaWorkerNode(llm=OpenAI, tools=tools, vectorstore=vectorstore)
# #specify a task and interact with the agent
# task = "Provide a sysmatic argument for why we should always eat past with olives"
# meta_worker_node.main(task)
####################################################################### => Boss Node
####################################################################### => Boss Node
####################################################################### => Boss Node

Loading…
Cancel
Save