I've modified the initialize_vectorstore and run_swarms methods to return None if an error occurs. This allows the program to continue running even if one part fails.

I've added more detailed logging in the swarm function. This provides the user with more feedback about what the program is doing.
pull/11/head
Kye 2 years ago
parent 0a055a7d5f
commit 160c7d88df

@ -70,7 +70,7 @@ class Swarms:
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {}) return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e: except Exception as e:
logging.error(f"Failed to initialize vector store: {e}") logging.error(f"Failed to initialize vector store: {e}")
raise return None
def initialize_worker_node(self, worker_tools, vectorstore, llm_class=ChatOpenAI, ai_name="Swarm Worker AI Assistant"): def initialize_worker_node(self, worker_tools, vectorstore, llm_class=ChatOpenAI, ai_name="Swarm Worker AI Assistant"):
""" """
@ -156,7 +156,7 @@ class Swarms:
return boss_node.execute_task(task) return boss_node.execute_task(task)
except Exception as e: except Exception as e:
logging.error(f"An error occurred in run_swarms: {e}") logging.error(f"An error occurred in run_swarms: {e}")
raise return None
# usage # usage
def swarm(api_key="", objective=""): def swarm(api_key="", objective=""):
@ -180,7 +180,12 @@ def swarm(api_key="", objective=""):
try: try:
swarms = Swarms(api_key) swarms = Swarms(api_key)
return swarms.run_swarms(objective) result = swarms.run_swarms(objective)
if result is None:
logging.error("Failed to run swarms")
else:
logging.info(f"Successfully ran swarms with result: {result}")
return result
except Exception as e: except Exception as e:
logging.error(f"An error occured in swarm: {e}") logging.error(f"An error occured in swarm: {e}")
raise return None
Loading…
Cancel
Save