removed open interpreter, clean uped docs, added add messages to flow + utils

pull/93/head^2
Kye 1 year ago
parent 62a413579c
commit 16176e8cad

@ -53,7 +53,7 @@ The `BaseChunker` class is the core component of the `BaseChunker` module. It is
#### Parameters:
- `separators` (list[ChunkSeparator]): Specifies a list of `ChunkSeparator` objects used to split the text into chunks.
- `tokenizer` (OpenAiTokenizer): Defines the tokenizer to be used for counting tokens in the text.
- `tokenizer` (OpenAITokenizer): Defines the tokenizer to be used for counting tokens in the text.
- `max_tokens` (int): Sets the maximum token limit for each chunk.
### 4.2. Examples <a name="examples"></a>

@ -52,7 +52,7 @@ The `PdfChunker` class is the core component of the `PdfChunker` module. It is u
#### Parameters:
- `separators` (list[ChunkSeparator]): Specifies a list of `ChunkSeparator` objects used to split the PDF text content into chunks.
- `tokenizer` (OpenAiTokenizer): Defines the tokenizer used for counting tokens in the text.
- `tokenizer` (OpenAITokenizer): Defines the tokenizer used for counting tokens in the text.
- `max_tokens` (int): Sets the maximum token limit for each chunk.
### 4.2. Examples <a name="examples"></a>

@ -29,7 +29,9 @@ flow = Flow(
# out = flow.load_state("flow_state.json")
# temp = flow.dynamic_temperature()
# filter = flow.add_response_filter("Trump")
out = flow.run("Generate a 10,000 word blog on mental clarity and the benefits of meditation.")
out = flow.run(
"Generate a 10,000 word blog on mental clarity and the benefits of meditation."
)
# out = flow.validate_response(out)
# out = flow.analyze_feedback(out)
# out = flow.print_history_and_memory()

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry]
name = "swarms"
version = "2.0.1"
version = "2.0.2"
description = "Swarms - Pytorch"
license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"]
@ -41,6 +41,7 @@ sentencepiece = "*"
wget = "*"
griptape = "*"
httpx = "*"
tiktoken = "*"
attrs = "*"
ggl = "*"
beautifulsoup4 = "*"
@ -49,7 +50,6 @@ pydantic = "*"
tenacity = "*"
Pillow = "*"
chromadb = "*"
open-interpreter = "*"
tabulate = "*"
termcolor = "*"
black = "*"

@ -29,6 +29,7 @@ sentencepiece
duckduckgo-search
agent-protocol
chromadb
tiktoken
open-interpreter
tabulate
colored

@ -5,6 +5,7 @@ from swarms.agents.message import Message
# from swarms.agents.stream_response import stream
from swarms.agents.base import AbstractAgent
from swarms.agents.registry import Registry
# from swarms.agents.idea_to_image_agent import Idea2Image
from swarms.agents.simple_agent import SimpleAgent

@ -0,0 +1,4 @@
"""
Companion agents converse with the user about the agent the user wants to create then creates the agent with the desired attributes and traits and tools and configurations
"""

@ -16,7 +16,6 @@ from langchain.text_splitter import CharacterTextSplitter
from langchain.vectorstores import Chroma
from pydantic import BaseModel, Field
from swarms.prompts.sales import SALES_AGENT_TOOLS_PROMPT, conversation_stages
from swarms.tools.interpreter_tool import compile
# classes
@ -166,12 +165,7 @@ def get_tools(product_catalog):
func=knowledge_base.run,
description="useful for when you need to answer questions about product information",
),
# Interpreter
Tool(
name="Code Interepeter",
func=compile,
description="Useful when you need to run code locally, such as Python, Javascript, Shell, and more.",
)
# omnimodal agent
]

@ -1,10 +1,13 @@
from __future__ import annotations
from abc import ABC
from typing import Optional
from attr import define, field, Factory
from attr import Factory, define, field
from griptape.artifacts import TextArtifact
from swarms.chunkers.chunk_seperators import ChunkSeparator
from griptape.tokenizers import OpenAiTokenizer
from swarms.chunkers.chunk_seperator import ChunkSeparator
from swarms.models.openai_tokenizer import OpenAITokenizer
@define
@ -16,6 +19,24 @@ class BaseChunker(ABC):
Usage:
--------------
from swarms.chunkers.base import BaseChunker
from swarms.chunkers.chunk_seperator import ChunkSeparator
class PdfChunker(BaseChunker):
DEFAULT_SEPARATORS = [
ChunkSeparator("\n\n"),
ChunkSeparator(". "),
ChunkSeparator("! "),
ChunkSeparator("? "),
ChunkSeparator(" "),
]
# Example
pdf = "swarmdeck.pdf"
chunker = PdfChunker()
chunks = chunker.chunk(pdf)
print(chunks)
"""
@ -26,10 +47,10 @@ class BaseChunker(ABC):
default=Factory(lambda self: self.DEFAULT_SEPARATORS, takes_self=True),
kw_only=True,
)
tokenizer: OpenAiTokenizer = field(
tokenizer: OpenAITokenizer = field(
default=Factory(
lambda: OpenAiTokenizer(
model=OpenAiTokenizer.DEFAULT_OPENAI_GPT_3_CHAT_MODEL
lambda: OpenAITokenizer(
model=OpenAITokenizer.DEFAULT_OPENAI_GPT_3_CHAT_MODEL
)
),
kw_only=True,
@ -47,7 +68,7 @@ class BaseChunker(ABC):
def _chunk_recursively(
self, chunk: str, current_separator: Optional[ChunkSeparator] = None
) -> list[str]:
token_count = self.tokenizer.token_count(chunk)
token_count = self.tokenizer.count_tokens(chunk)
if token_count <= self.max_tokens:
return [chunk]

@ -15,3 +15,10 @@ class MarkdownChunker(BaseChunker):
ChunkSeparator("? "),
ChunkSeparator(" "),
]
# # Example using chunker to chunk a markdown file
# file = open("README.md", "r")
# text = file.read()
# chunker = MarkdownChunker()
# chunks = chunker.chunk(text)

@ -0,0 +1,124 @@
"""
Omni Chunker is a chunker that chunks all files into select chunks of size x strings
Usage:
--------------
from swarms.chunkers.omni_chunker import OmniChunker
# Example
pdf = "swarmdeck.pdf"
chunker = OmniChunker(chunk_size=1000, beautify=True)
chunks = chunker(pdf)
print(chunks)
"""
from dataclasses import dataclass
from typing import List, Optional, Callable
from termcolor import colored
import os
import sys
@dataclass
class OmniChunker:
"""
"""
chunk_size: int = 1000
beautify: bool = False
use_tokenizer: bool = False
tokenizer: Optional[Callable[[str], List[str]]] = None
def __call__(self, file_path: str) -> List[str]:
"""
Chunk the given file into parts of size `chunk_size`.
Args:
file_path (str): The path to the file to chunk.
Returns:
List[str]: A list of string chunks from the file.
"""
if not os.path.isfile(file_path):
print(colored("The file does not exist.", "red"))
return []
file_extension = os.path.splitext(file_path)[1]
try:
with open(file_path, "rb") as file:
content = file.read()
# Decode content based on MIME type or file extension
decoded_content = self.decode_content(content, file_extension)
chunks = self.chunk_content(decoded_content)
return chunks
except Exception as e:
print(colored(f"Error reading file: {e}", "red"))
return []
def decode_content(self, content: bytes, file_extension: str) -> str:
"""
Decode the content of the file based on its MIME type or file extension.
Args:
content (bytes): The content of the file.
file_extension (str): The file extension of the file.
Returns:
str: The decoded content of the file.
"""
# Add logic to handle different file types based on the extension
# For simplicity, this example assumes text files encoded in utf-8
try:
return content.decode("utf-8")
except UnicodeDecodeError as e:
print(
colored(
f"Could not decode file with extension {file_extension}: {e}",
"yellow",
)
)
return ""
def chunk_content(self, content: str) -> List[str]:
"""
Split the content into chunks of size `chunk_size`.
Args:
content (str): The content to chunk.
Returns:
List[str]: The list of chunks.
"""
return [
content[i : i + self.chunk_size]
for i in range(0, len(content), self.chunk_size)
]
def __str__(self):
return f"OmniChunker(chunk_size={self.chunk_size}, beautify={self.beautify})"
def metrics(self):
return {
"chunk_size": self.chunk_size,
"beautify": self.beautify,
}
def print_dashboard(self):
print(
colored(
f"""
Omni Chunker
------------
{self.metrics()}
""",
"cyan",
)
)

@ -10,3 +10,10 @@ class PdfChunker(BaseChunker):
ChunkSeparator("? "),
ChunkSeparator(" "),
]
# # Example
# pdf = "swarmdeck.pdf"
# chunker = PdfChunker()
# chunks = chunker.chunk(pdf)
# print(chunks)

@ -16,6 +16,7 @@ from swarms.models.kosmos_two import Kosmos
from swarms.models.vilt import Vilt
from swarms.models.nougat import Nougat
from swarms.models.layoutlm_document_qa import LayoutLMDocumentQA
# from swarms.models.gpt4v import GPT4Vision
# from swarms.models.dalle3 import Dalle3

@ -44,7 +44,7 @@ class Anthropic:
top_p=None,
streaming=False,
default_request_timeout=None,
api_key: str = None
api_key: str = None,
):
self.model = model
self.max_tokens_to_sample = max_tokens_to_sample

@ -154,11 +154,8 @@ class Dalle3:
"""
try:
response = self.client.images.create_variation(
img = open(img, "rb"),
n=self.n,
size=self.size
img=open(img, "rb"), n=self.n, size=self.size
)
img = response.data[0].url

@ -74,7 +74,9 @@ class HuggingfaceLLM:
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id, *args, **kwargs)
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id, *args, **kwargs
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config, *args, **kwargs
)
@ -162,7 +164,12 @@ class HuggingfaceLLM:
del inputs
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
except Exception as e:
print(colored(f"HuggingfaceLLM could not generate text because of error: {e}, try optimizing your arguments", "red"))
print(
colored(
f"HuggingfaceLLM could not generate text because of error: {e}, try optimizing your arguments",
"red",
)
)
raise
async def run_async(self, task: str, *args, **kwargs) -> str:

@ -0,0 +1,74 @@
from typing import Dict, List, Optional
from dataclass import dataclass
from swarms.models import OpenAI
@dataclass
class OpenAIAssistant:
name: str = "OpenAI Assistant"
instructions: str = None
tools: List[Dict] = None
model: str = None
openai_api_key: str = None
temperature: float = 0.5
max_tokens: int = 100
stop: List[str] = None
echo: bool = False
stream: bool = False
log: bool = False
presence: bool = False
dashboard: bool = False
debug: bool = False
max_loops: int = 5
stopping_condition: Optional[str] = None
loop_interval: int = 1
retry_attempts: int = 3
retry_interval: int = 1
interactive: bool = False
dynamic_temperature: bool = False
state: Dict = None
response_filters: List = None
response_filter: Dict = None
response_filter_name: str = None
response_filter_value: str = None
response_filter_type: str = None
response_filter_action: str = None
response_filter_action_value: str = None
response_filter_action_type: str = None
response_filter_action_name: str = None
client = OpenAI()
role: str = "user"
instructions: str = None
def create_assistant(self, task: str):
assistant = self.client.create_assistant(
name=self.name,
instructions=self.instructions,
tools=self.tools,
model=self.model,
)
return assistant
def create_thread(self):
thread = self.client.beta.threads.create()
return thread
def add_message_to_thread(self, thread_id: str, message: str):
message = self.client.beta.threads.add_message(
thread_id=thread_id, role=self.user, content=message
)
return message
def run(self, task: str):
run = self.client.beta.threads.runs.create(
thread_id=self.create_thread().id,
assistant_id=self.create_assistant().id,
instructions=self.instructions,
)
out = self.client.beta.threads.runs.retrieve(
thread_id=run.thread_id, run_id=run.id
)
return out

@ -0,0 +1,150 @@
from __future__ import annotations
import logging
from abc import ABC, abstractmethod
from typing import Optional
import tiktoken
from attr import Factory, define, field
@define(frozen=True)
class BaseTokenizer(ABC):
DEFAULT_STOP_SEQUENCES = ["Observation:"]
stop_sequences: list[str] = field(
default=Factory(lambda: BaseTokenizer.DEFAULT_STOP_SEQUENCES),
kw_only=True,
)
@property
@abstractmethod
def max_tokens(self) -> int:
...
def count_tokens_left(self, text: str) -> int:
diff = self.max_tokens - self.count_tokens(text)
if diff > 0:
return diff
else:
return 0
@abstractmethod
def count_tokens(self, text: str) -> int:
...
@define(frozen=True)
class OpenAITokenizer(BaseTokenizer):
DEFAULT_OPENAI_GPT_3_COMPLETION_MODEL = "text-davinci-003"
DEFAULT_OPENAI_GPT_3_CHAT_MODEL = "gpt-3.5-turbo"
DEFAULT_OPENAI_GPT_4_MODEL = "gpt-4"
DEFAULT_ENCODING = "cl100k_base"
DEFAULT_MAX_TOKENS = 2049
TOKEN_OFFSET = 8
MODEL_PREFIXES_TO_MAX_TOKENS = {
"gpt-4-32k": 32768,
"gpt-4": 8192,
"gpt-3.5-turbo-16k": 16384,
"gpt-3.5-turbo": 4096,
"gpt-35-turbo-16k": 16384,
"gpt-35-turbo": 4096,
"text-davinci-003": 4097,
"text-davinci-002": 4097,
"code-davinci-002": 8001,
"text-embedding-ada-002": 8191,
"text-embedding-ada-001": 2046,
}
EMBEDDING_MODELS = ["text-embedding-ada-002", "text-embedding-ada-001"]
model: str = field(kw_only=True)
@property
def encoding(self) -> tiktoken.Encoding:
try:
return tiktoken.encoding_for_model(self.model)
except KeyError:
return tiktoken.get_encoding(self.DEFAULT_ENCODING)
@property
def max_tokens(self) -> int:
tokens = next(
v
for k, v in self.MODEL_PREFIXES_TO_MAX_TOKENS.items()
if self.model.startswith(k)
)
offset = 0 if self.model in self.EMBEDDING_MODELS else self.TOKEN_OFFSET
return (tokens if tokens else self.DEFAULT_MAX_TOKENS) - offset
def count_tokens(
self, text: str | list, model: Optional[str] = None
) -> int:
"""
Handles the special case of ChatML. Implementation adopted from the official OpenAI notebook:
https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
"""
if isinstance(text, list):
model = model if model else self.model
try:
encoding = tiktoken.encoding_for_model(model)
except KeyError:
logging.warning("model not found. Using cl100k_base encoding.")
encoding = tiktoken.get_encoding("cl100k_base")
if model in {
"gpt-3.5-turbo-0613",
"gpt-3.5-turbo-16k-0613",
"gpt-4-0314",
"gpt-4-32k-0314",
"gpt-4-0613",
"gpt-4-32k-0613",
}:
tokens_per_message = 3
tokens_per_name = 1
elif model == "gpt-3.5-turbo-0301":
# every message follows <|start|>{role/name}\n{content}<|end|>\n
tokens_per_message = 4
# if there's a name, the role is omitted
tokens_per_name = -1
elif "gpt-3.5-turbo" in model or "gpt-35-turbo" in model:
logging.info(
"gpt-3.5-turbo may update over time. Returning num tokens assuming gpt-3.5-turbo-0613."
)
return self.count_tokens(text, model="gpt-3.5-turbo-0613")
elif "gpt-4" in model:
logging.info(
"gpt-4 may update over time. Returning num tokens assuming gpt-4-0613."
)
return self.count_tokens(text, model="gpt-4-0613")
else:
raise NotImplementedError(
f"""token_count() is not implemented for model {model}.
See https://github.com/openai/openai-python/blob/main/chatml.md for
information on how messages are converted to tokens."""
)
num_tokens = 0
for message in text:
num_tokens += tokens_per_message
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name":
num_tokens += tokens_per_name
# every reply is primed with <|start|>assistant<|message|>
num_tokens += 3
return num_tokens
else:
return len(
self.encoding.encode(
text, allowed_special=set(self.stop_sequences)
)
)

@ -116,6 +116,7 @@ class Flow:
dynamic_temperature: bool = False,
saved_state_path: Optional[str] = "flow_state.json",
autosave: bool = False,
context_length: int = 8192,
**kwargs: Any,
):
self.llm = llm
@ -188,6 +189,26 @@ class Flow:
return "\n".join(params_str_list)
def truncate_history(self):
"""
Take the history and truncate it to fit into the model context length
"""
truncated_history = self.memory[-1][-self.context_length :]
self.memory[-1] = truncated_history
def add_task_to_memory(self, task: str):
"""Add the task to the memory"""
self.memory.append([f"Human: {task}"])
def add_message_to_memory(self, message: str):
"""Add the message to the memory"""
self.memory[-1].append(message)
def add_message_to_memory_and_truncate(self, message: str):
"""Add the message to the memory and truncate"""
self.memory[-1].append(message)
self.truncate_history()
def print_dashboard(self, task: str):
"""Print dashboard"""
model_config = self.get_llm_init_params()

@ -1,24 +0,0 @@
import os
import interpreter
def compile(task: str):
"""
Open Interpreter lets LLMs run code (Python, Javascript, Shell, and more) locally. You can chat with Open Interpreter through a ChatGPT-like interface in your terminal by running $ interpreter after installing.
This provides a natural-language interface to your computer's general-purpose capabilities:
Create and edit photos, videos, PDFs, etc.
Control a Chrome browser to perform research
Plot, clean, and analyze large datasets
...etc.
Note: You'll be asked to approve code before it's run.
"""
task = interpreter.chat(task, return_messages=True)
interpreter.chat()
interpreter.reset(task)
os.environ["INTERPRETER_CLI_AUTO_RUN"] = True
os.environ["INTERPRETER_CLI_FAST_MODE"] = True
os.environ["INTERPRETER_CLI_DEBUG"] = True

@ -1,2 +1,2 @@
from swarms.workers.worker import Worker
# from swarms.workers.worker import Worker
from swarms.workers.base import AbstractWorker

@ -3,7 +3,7 @@ from swarms.chunkers.base import (
BaseChunker,
TextArtifact,
ChunkSeparator,
OpenAiTokenizer,
OpenAITokenizer,
) # adjust the import paths accordingly
@ -21,7 +21,7 @@ def test_default_separators():
def test_default_tokenizer():
chunker = BaseChunker()
assert isinstance(chunker.tokenizer, OpenAiTokenizer)
assert isinstance(chunker.tokenizer, OpenAITokenizer)
# 2. Test Basic Chunking

@ -23,8 +23,12 @@ def dalle3(mock_openai_client):
def test_dalle3_call_success(dalle3, mock_openai_client):
# Arrange
task = "A painting of a dog"
expected_img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
mock_openai_client.images.generate.return_value = Mock(data=[Mock(url=expected_img_url)])
expected_img_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
)
mock_openai_client.images.generate.return_value = Mock(
data=[Mock(url=expected_img_url)]
)
# Act
img_url = dalle3(task)
@ -40,7 +44,9 @@ def test_dalle3_call_failure(dalle3, mock_openai_client, capsys):
expected_error_message = "Error running Dalle3: API Error"
# Mocking OpenAIError
mock_openai_client.images.generate.side_effect = OpenAIError(expected_error_message, http_status=500, error="Internal Server Error")
mock_openai_client.images.generate.side_effect = OpenAIError(
expected_error_message, http_status=500, error="Internal Server Error"
)
# Act and assert
with pytest.raises(OpenAIError) as excinfo:
@ -57,8 +63,12 @@ def test_dalle3_call_failure(dalle3, mock_openai_client, capsys):
def test_dalle3_create_variations_success(dalle3, mock_openai_client):
# Arrange
img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
expected_variation_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_02ABCDE.png"
mock_openai_client.images.create_variation.return_value = Mock(data=[Mock(url=expected_variation_url)])
expected_variation_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_02ABCDE.png"
)
mock_openai_client.images.create_variation.return_value = Mock(
data=[Mock(url=expected_variation_url)]
)
# Act
variation_img_url = dalle3.create_variations(img_url)
@ -78,7 +88,9 @@ def test_dalle3_create_variations_failure(dalle3, mock_openai_client, capsys):
expected_error_message = "Error running Dalle3: API Error"
# Mocking OpenAIError
mock_openai_client.images.create_variation.side_effect = OpenAIError(expected_error_message, http_status=500, error="Internal Server Error")
mock_openai_client.images.create_variation.side_effect = OpenAIError(
expected_error_message, http_status=500, error="Internal Server Error"
)
# Act and assert
with pytest.raises(OpenAIError) as excinfo:
@ -142,8 +154,12 @@ def test_dalle3_convert_to_bytesio():
def test_dalle3_call_multiple_times(dalle3, mock_openai_client):
# Arrange
task = "A painting of a dog"
expected_img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
mock_openai_client.images.generate.return_value = Mock(data=[Mock(url=expected_img_url)])
expected_img_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
)
mock_openai_client.images.generate.return_value = Mock(
data=[Mock(url=expected_img_url)]
)
# Act
img_url1 = dalle3(task)
@ -159,7 +175,9 @@ def test_dalle3_call_with_large_input(dalle3, mock_openai_client):
# Arrange
task = "A" * 2048 # Input longer than API's limit
expected_error_message = "Error running Dalle3: API Error"
mock_openai_client.images.generate.side_effect = OpenAIError(expected_error_message, http_status=500, error="Internal Server Error")
mock_openai_client.images.generate.side_effect = OpenAIError(
expected_error_message, http_status=500, error="Internal Server Error"
)
# Act and assert
with pytest.raises(OpenAIError) as excinfo:
@ -204,7 +222,9 @@ def test_dalle3_convert_to_bytesio_invalid_format(dalle3):
def test_dalle3_call_with_retry(dalle3, mock_openai_client):
# Arrange
task = "A painting of a dog"
expected_img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
expected_img_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
)
# Simulate a retry scenario
mock_openai_client.images.generate.side_effect = [
@ -223,7 +243,9 @@ def test_dalle3_call_with_retry(dalle3, mock_openai_client):
def test_dalle3_create_variations_with_retry(dalle3, mock_openai_client):
# Arrange
img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
expected_variation_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_02ABCDE.png"
expected_variation_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_02ABCDE.png"
)
# Simulate a retry scenario
mock_openai_client.images.create_variation.side_effect = [
@ -245,7 +267,9 @@ def test_dalle3_call_exception_logging(dalle3, mock_openai_client, capsys):
expected_error_message = "Error running Dalle3: API Error"
# Mocking OpenAIError
mock_openai_client.images.generate.side_effect = OpenAIError(expected_error_message, http_status=500, error="Internal Server Error")
mock_openai_client.images.generate.side_effect = OpenAIError(
expected_error_message, http_status=500, error="Internal Server Error"
)
# Act
with pytest.raises(OpenAIError):
@ -262,7 +286,9 @@ def test_dalle3_create_variations_exception_logging(dalle3, mock_openai_client,
expected_error_message = "Error running Dalle3: API Error"
# Mocking OpenAIError
mock_openai_client.images.create_variation.side_effect = OpenAIError(expected_error_message, http_status=500, error="Internal Server Error")
mock_openai_client.images.create_variation.side_effect = OpenAIError(
expected_error_message, http_status=500, error="Internal Server Error"
)
# Act
with pytest.raises(OpenAIError):
@ -313,7 +339,9 @@ def test_dalle3_call_with_retry_max_retries_exceeded(dalle3, mock_openai_client)
task = "A painting of a dog"
# Simulate max retries exceeded
mock_openai_client.images.generate.side_effect = OpenAIError("Temporary error", http_status=500, error="Internal Server Error")
mock_openai_client.images.generate.side_effect = OpenAIError(
"Temporary error", http_status=500, error="Internal Server Error"
)
# Act and assert
with pytest.raises(OpenAIError) as excinfo:
@ -322,12 +350,16 @@ def test_dalle3_call_with_retry_max_retries_exceeded(dalle3, mock_openai_client)
assert "Retry limit exceeded" in str(excinfo.value)
def test_dalle3_create_variations_with_retry_max_retries_exceeded(dalle3, mock_openai_client):
def test_dalle3_create_variations_with_retry_max_retries_exceeded(
dalle3, mock_openai_client
):
# Arrange
img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
# Simulate max retries exceeded
mock_openai_client.images.create_variation.side_effect = OpenAIError("Temporary error", http_status=500, error="Internal Server Error")
mock_openai_client.images.create_variation.side_effect = OpenAIError(
"Temporary error", http_status=500, error="Internal Server Error"
)
# Act and assert
with pytest.raises(OpenAIError) as excinfo:
@ -339,7 +371,9 @@ def test_dalle3_create_variations_with_retry_max_retries_exceeded(dalle3, mock_o
def test_dalle3_call_retry_with_success(dalle3, mock_openai_client):
# Arrange
task = "A painting of a dog"
expected_img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
expected_img_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
)
# Simulate success after a retry
mock_openai_client.images.generate.side_effect = [
@ -358,7 +392,9 @@ def test_dalle3_call_retry_with_success(dalle3, mock_openai_client):
def test_dalle3_create_variations_retry_with_success(dalle3, mock_openai_client):
# Arrange
img_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
expected_variation_url = "https://cdn.openai.com/dall-e/encoded/feats/feats_02ABCDE.png"
expected_variation_url = (
"https://cdn.openai.com/dall-e/encoded/feats/feats_02ABCDE.png"
)
# Simulate success after a retry
mock_openai_client.images.create_variation.side_effect = [

@ -12,15 +12,18 @@ load_dotenv
api_key = os.getenv("OPENAI_API_KEY")
# Mock the OpenAI client
@pytest.fixture
def mock_openai_client():
return Mock()
@pytest.fixture
def gpt4vision(mock_openai_client):
return GPT4Vision(client=mock_openai_client)
def test_gpt4vision_default_values():
# Arrange and Act
gpt4vision = GPT4Vision()
@ -34,6 +37,7 @@ def test_gpt4vision_default_values():
assert gpt4vision.quality == "low"
assert gpt4vision.max_tokens == 200
def test_gpt4vision_api_key_from_env_variable():
# Arrange
api_key = os.environ["OPENAI_API_KEY"]
@ -44,6 +48,7 @@ def test_gpt4vision_api_key_from_env_variable():
# Assert
assert gpt4vision.api_key == api_key
def test_gpt4vision_set_api_key():
# Arrange
gpt4vision = GPT4Vision(api_key=api_key)
@ -51,26 +56,31 @@ def test_gpt4vision_set_api_key():
# Assert
assert gpt4vision.api_key == api_key
def test_gpt4vision_invalid_max_retries():
# Arrange and Act
with pytest.raises(ValueError):
GPT4Vision(max_retries=-1)
def test_gpt4vision_invalid_backoff_factor():
# Arrange and Act
with pytest.raises(ValueError):
GPT4Vision(backoff_factor=-1)
def test_gpt4vision_invalid_timeout_seconds():
# Arrange and Act
with pytest.raises(ValueError):
GPT4Vision(timeout_seconds=-1)
def test_gpt4vision_invalid_max_tokens():
# Arrange and Act
with pytest.raises(ValueError):
GPT4Vision(max_tokens=-1)
def test_gpt4vision_logger_initialized():
# Arrange
gpt4vision = GPT4Vision()
@ -78,6 +88,7 @@ def test_gpt4vision_logger_initialized():
# Assert
assert isinstance(gpt4vision.logger, logging.Logger)
def test_gpt4vision_process_img_nonexistent_file():
# Arrange
gpt4vision = GPT4Vision()
@ -87,6 +98,7 @@ def test_gpt4vision_process_img_nonexistent_file():
with pytest.raises(FileNotFoundError):
gpt4vision.process_img(img_path)
def test_gpt4vision_call_single_task_single_image_no_openai_client(gpt4vision):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
@ -96,7 +108,10 @@ def test_gpt4vision_call_single_task_single_image_no_openai_client(gpt4vision):
with pytest.raises(AttributeError):
gpt4vision(img_url, [task])
def test_gpt4vision_call_single_task_single_image_empty_response(gpt4vision, mock_openai_client):
def test_gpt4vision_call_single_task_single_image_empty_response(
gpt4vision, mock_openai_client
):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
task = "Describe this image."
@ -110,7 +125,10 @@ def test_gpt4vision_call_single_task_single_image_empty_response(gpt4vision, moc
assert response.answer == ""
mock_openai_client.chat.completions.create.assert_called_once()
def test_gpt4vision_call_multiple_tasks_single_image_empty_responses(gpt4vision, mock_openai_client):
def test_gpt4vision_call_multiple_tasks_single_image_empty_responses(
gpt4vision, mock_openai_client
):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
tasks = ["Describe this image.", "What's in this picture?"]
@ -122,20 +140,30 @@ def test_gpt4vision_call_multiple_tasks_single_image_empty_responses(gpt4vision,
# Assert
assert all(response.answer == "" for response in responses)
assert mock_openai_client.chat.completions.create.call_count == 1 # Should be called only once
assert (
mock_openai_client.chat.completions.create.call_count == 1
) # Should be called only once
def test_gpt4vision_call_single_task_single_image_timeout(gpt4vision, mock_openai_client):
def test_gpt4vision_call_single_task_single_image_timeout(
gpt4vision, mock_openai_client
):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
task = "Describe this image."
mock_openai_client.chat.completions.create.side_effect = Timeout("Request timed out")
mock_openai_client.chat.completions.create.side_effect = Timeout(
"Request timed out"
)
# Act and Assert
with pytest.raises(Timeout):
gpt4vision(img_url, [task])
def test_gpt4vision_call_retry_with_success_after_timeout(gpt4vision, mock_openai_client):
def test_gpt4vision_call_retry_with_success_after_timeout(
gpt4vision, mock_openai_client
):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
task = "Describe this image."
@ -143,7 +171,11 @@ def test_gpt4vision_call_retry_with_success_after_timeout(gpt4vision, mock_opena
# Simulate success after a timeout and retry
mock_openai_client.chat.completions.create.side_effect = [
Timeout("Request timed out"),
{"choices": [{"message": {"content": {"text": "A description of the image."}}}],}
{
"choices": [
{"message": {"content": {"text": "A description of the image."}}}
],
},
]
# Act
@ -151,7 +183,9 @@ def test_gpt4vision_call_retry_with_success_after_timeout(gpt4vision, mock_opena
# Assert
assert response.answer == "A description of the image."
assert mock_openai_client.chat.completions.create.call_count == 2 # Should be called twice
assert (
mock_openai_client.chat.completions.create.call_count == 2
) # Should be called twice
def test_gpt4vision_process_img():
@ -173,7 +207,9 @@ def test_gpt4vision_call_single_task_single_image(gpt4vision, mock_openai_client
expected_response = GPT4VisionResponse(answer="A description of the image.")
mock_openai_client.chat.completions.create.return_value.choices[0].text = expected_response.answer
mock_openai_client.chat.completions.create.return_value.choices[
0
].text = expected_response.answer
# Act
response = gpt4vision(img_url, [task])
@ -190,7 +226,9 @@ def test_gpt4vision_call_single_task_multiple_images(gpt4vision, mock_openai_cli
expected_response = GPT4VisionResponse(answer="Descriptions of the images.")
mock_openai_client.chat.completions.create.return_value.choices[0].text = expected_response.answer
mock_openai_client.chat.completions.create.return_value.choices[
0
].text = expected_response.answer
# Act
response = gpt4vision(img_urls, [task])
@ -213,57 +251,76 @@ def test_gpt4vision_call_multiple_tasks_single_image(gpt4vision, mock_openai_cli
def create_mock_response(response):
return {"choices": [{"message": {"content": {"text": response.answer}}}]}
mock_openai_client.chat.completions.create.side_effect = [create_mock_response(response) for response in expected_responses]
mock_openai_client.chat.completions.create.side_effect = [
create_mock_response(response) for response in expected_responses
]
# Act
responses = gpt4vision(img_url, tasks)
# Assert
assert responses == expected_responses
assert mock_openai_client.chat.completions.create.call_count == 1 # Should be called only once
def test_gpt4vision_call_multiple_tasks_single_image(gpt4vision, mock_openai_client):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
tasks = ["Describe this image.", "What's in this picture?"]
expected_responses = [
GPT4VisionResponse(answer="A description of the image."),
GPT4VisionResponse(answer="It contains various objects."),
]
mock_openai_client.chat.completions.create.side_effect = [
{"choices": [{"message": {"content": {"text": expected_responses[i].answer}}}] } for i in range(len(expected_responses))
assert (
mock_openai_client.chat.completions.create.call_count == 1
) # Should be called only once
def test_gpt4vision_call_multiple_tasks_single_image(
gpt4vision, mock_openai_client
):
# Arrange
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
tasks = ["Describe this image.", "What's in this picture?"]
expected_responses = [
GPT4VisionResponse(answer="A description of the image."),
GPT4VisionResponse(answer="It contains various objects."),
]
mock_openai_client.chat.completions.create.side_effect = [
{
"choices": [
{"message": {"content": {"text": expected_responses[i].answer}}}
]
}
for i in range(len(expected_responses))
]
# Act
responses = gpt4vision(img_url, tasks)
# Act
responses = gpt4vision(img_url, tasks)
# Assert
assert responses == expected_responses
assert mock_openai_client.chat.completions.create.call_count == 1 # Should be called only once
# Assert
assert responses == expected_responses
assert (
mock_openai_client.chat.completions.create.call_count == 1
) # Should be called only once
def test_gpt4vision_call_multiple_tasks_multiple_images(gpt4vision, mock_openai_client):
# Arrange
img_urls = ["https://images.unsplash.com/photo-1694734479857-626882b6db37?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D", "https://images.unsplash.com/photo-1694734479898-6ac4633158ac?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"]
img_urls = [
"https://images.unsplash.com/photo-1694734479857-626882b6db37?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D",
"https://images.unsplash.com/photo-1694734479898-6ac4633158ac?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D",
]
tasks = ["Describe these images.", "What's in these pictures?"]
expected_responses = [
GPT4VisionResponse(answer="Descriptions of the images."),
GPT4VisionResponse(answer="They contain various objects.")
GPT4VisionResponse(answer="They contain various objects."),
]
mock_openai_client.chat.completions.create.side_effect = [
{"choices": [{"message": {"content": {"text": response.answer}}}] } for response in expected_responses
{"choices": [{"message": {"content": {"text": response.answer}}}]}
for response in expected_responses
]
# Act
responses = gpt4vision(img_urls, tasks)
# Assert
assert responses == expected_responses
assert mock_openai_client.chat.completions.create.call_count == 1 # Should be called only once
assert (
mock_openai_client.chat.completions.create.call_count == 1
) # Should be called only once
def test_gpt4vision_call_http_error(gpt4vision, mock_openai_client):
@ -283,7 +340,9 @@ def test_gpt4vision_call_request_error(gpt4vision, mock_openai_client):
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
task = "Describe this image."
mock_openai_client.chat.completions.create.side_effect = RequestException("Request Error")
mock_openai_client.chat.completions.create.side_effect = RequestException(
"Request Error"
)
# Act and Assert
with pytest.raises(RequestException):
@ -295,7 +354,9 @@ def test_gpt4vision_call_connection_error(gpt4vision, mock_openai_client):
img_url = "https://images.unsplash.com/photo-1694734479942-8cc7f4660578?q=80&w=1287&auto=format&fit=crop&ixlib=rb-4.0.3&ixid=M3wxMjA3fDB8MHxwaG90by1wYWdlfHx8fGVufDB8fHx8fA%3D%3D"
task = "Describe this image."
mock_openai_client.chat.completions.create.side_effect = ConnectionError("Connection Error")
mock_openai_client.chat.completions.create.side_effect = ConnectionError(
"Connection Error"
)
# Act and Assert
with pytest.raises(ConnectionError):
@ -310,7 +371,9 @@ def test_gpt4vision_call_retry_with_success(gpt4vision, mock_openai_client):
# Simulate success after a retry
mock_openai_client.chat.completions.create.side_effect = [
RequestException("Temporary error"),
{"choices": [{"text": "A description of the image."}]} # fixed dictionary syntax
{
"choices": [{"text": "A description of the image."}]
}, # fixed dictionary syntax
]
# Act
@ -318,4 +381,6 @@ def test_gpt4vision_call_retry_with_success(gpt4vision, mock_openai_client):
# Assert
assert response.answer == "A description of the image."
assert mock_openai_client.chat.completions.create.call_count == 2 # Should be called twice
assert (
mock_openai_client.chat.completions.create.call_count == 2
) # Should be called twice

Loading…
Cancel
Save