Former-commit-id: b4309fb64c
pull/47/head
Kye 2 years ago
parent 03aa1cc261
commit 16877d602e

@ -0,0 +1,150 @@
#base toolset
from swarms.agents.tools.agent_tools import *
from langchain.tools import BaseTool
from langchain.callbacks.manager import (
AsyncCallbackManagerForToolRun,
CallbackManagerForToolRun,
)
from typing import List, Any, Dict, Optional, Type
from langchain.memory.chat_message_histories import FileChatMessageHistory
import logging
from pydantic import BaseModel, Extra
from swarms.agents.models.hf import HuggingFaceLLM
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
class AgentNodeInitializer:
"""Useful for when you need to spawn an autonomous agent instance as a agent to accomplish complex tasks, it can search the internet or spawn child multi-modality models to process and generate images and text or audio and so on"""
def __init__(self, llm, tools, vectorstore):
if not llm or not tools or not vectorstore:
logging.error("llm, tools, and vectorstore cannot be None.")
raise ValueError("llm, tools, and vectorstore cannot be None.")
self.llm = llm
self.tools = tools
self.vectorstore = vectorstore
self.agent = None
def create_agent(self, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
logging.info("Creating agent in AgentNode")
try:
self.agent = AutoGPT.from_llm_and_tools(
ai_name=ai_name,
ai_role=ai_role,
tools=self.tools,
llm=self.llm,
memory=self.vectorstore.as_retriever(search_kwargs=search_kwargs),
human_in_the_loop=human_in_the_loop,
chat_history_memory=FileChatMessageHistory("chat_history.txt"),
)
# self.agent.chain.verbose = verbose
except Exception as e:
logging.error(f"Error while creating agent: {str(e)}")
raise e
def add_tool(self, tool: Tool):
if not isinstance(tool, Tool):
logging.error("Tool must be an instance of Tool.")
raise TypeError("Tool must be an instance of Tool.")
self.tools.append(tool)
def run(self, prompt: str) -> str:
if not isinstance(prompt, str):
logging.error("Prompt must be a string.")
raise TypeError("Prompt must be a string.")
if not prompt:
logging.error("Prompt is empty.")
raise ValueError("Prompt is empty.")
try:
self.agent.run([f"{prompt}"])
return "Task completed by AgentNode"
except Exception as e:
logging.error(f"While running the agent: {str(e)}")
raise e
class AgentNode:
def __init__(self, openai_api_key):
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("openai_api_key cannot be None")
self.openai_api_key = openai_api_key
def initialize_llm(self, llm_class, temperature=0.5):
if not llm_class:
logging.error("llm_class cannot be none")
raise ValueError("llm_class cannot be None")
try:
return llm_class(openai_api_key=self.openai_api_key, temperature=temperature)
except Exception as e:
logging.error(f"Failed to initialize language model: {e}")
raise
def initialize_tools(self, llm_class):
if not llm_class:
logging.error("llm_class not cannot be none")
raise ValueError("llm_class cannot be none")
try:
logging.info('Creating AgentNode')
llm = self.initialize_llm(llm_class)
web_search = DuckDuckGoSearchRun()
tools = [
web_search,
WriteFileTool(root_dir=ROOT_DIR),
ReadFileTool(root_dir=ROOT_DIR),
process_csv,
WebpageQATool(qa_chain=load_qa_with_sources_chain(llm)),
]
if not tools:
logging.error("Tools are not initialized")
raise ValueError("Tools are not initialized")
return tools
except Exception as e:
logging.error(f"Failed to initialize tools: {e}")
def initialize_vectorstore(self):
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
raise
def create_agent(self, llm_class=ChatOpenAI, ai_name="Swarm Agent AI Assistant", ai_role="Assistant", human_in_the_loop=False, search_kwargs={}, verbose=False):
if not llm_class:
logging.error("llm_class cannot be None.")
raise ValueError("llm_class cannot be None.")
try:
agent_tools = self.initialize_tools(llm_class)
vectorstore = self.initialize_vectorstore()
agent = AgentNode(llm=self.initialize_llm(llm_class), tools=agent_tools, vectorstore=vectorstore)
agent.create_agent(ai_name=ai_name, ai_role=ai_role, human_in_the_loop=human_in_the_loop, search_kwargs=search_kwargs, verbose=verbose)
return agent
except Exception as e:
logging.error(f"Failed to create agent node: {e}")
raise
def agent(openai_api_key):
if not openai_api_key:
logging.error("OpenAI API key is not provided")
raise ValueError("OpenAI API key is required")
try:
initializer = AgentNodeInitializer(openai_api_key)
agent = initializer.create_agent()
return agent
except Exception as e:
logging.error(f"An error occured in agent: {e}")
raise

@ -3,29 +3,7 @@ import logging
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
class HuggingFaceLLM: class HuggingFaceLLM:
"""
A class that represents a Language Model (LLM) powered by HuggingFace Transformers.
Attributes:
model_id (str): ID of the pre-trained model in HuggingFace Model Hub.
device (str): Device to load the model onto.
max_length (int): Maximum length of the generated sequence.
tokenizer: Instance of the tokenizer corresponding to the model.
model: The loaded model instance.
logger: Logger instance for the class.
"""
def __init__(self, model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None): def __init__(self, model_id: str, device: str = None, max_length: int = 20, quantize: bool = False, quantization_config: dict = None):
"""
Constructs all the necessary attributes for the HuggingFaceLLM object.
Args:
model_id (str): ID of the pre-trained model in HuggingFace Model Hub.
device (str, optional): Device to load the model onto. Defaults to GPU if available, else CPU.
max_length (int, optional): Maximum length of the generated sequence. Defaults to 20.
quantize (bool, optional): Whether to apply quantization to the model. Defaults to False.
quantization_config (dict, optional): Configuration for model quantization. Defaults to None,
and a standard configuration will be used if quantize is True.
"""
self.logger = logging.getLogger(__name__) self.logger = logging.getLogger(__name__)
self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu') self.device = device if device else ('cuda' if torch.cuda.is_available() else 'cpu')
self.model_id = model_id self.model_id = model_id
@ -50,17 +28,6 @@ class HuggingFaceLLM:
self.logger.error(f"Failed to load the model or the tokenizer: {e}") self.logger.error(f"Failed to load the model or the tokenizer: {e}")
raise raise
def generate_text(self, prompt_text: str, max_length: int = None): def generate_text(self, prompt_text: str, max_length: int = None):
"""
Generates text based on the input prompt using the loaded model.
Args:
prompt_text (str): Input prompt to generate text from.
max_length (int, optional): Maximum length of the generated sequence. Defaults to None,
and the max_length set during initialization will be used.
Returns:
str: Generated text.
"""
max_length = max_length if max_length else self.max_length max_length = max_length if max_length else self.max_length
try: try:
inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(self.device) inputs = self.tokenizer.encode(prompt_text, return_tensors="pt").to(self.device)

Loading…
Cancel
Save