parent
e49d85b65c
commit
1808da08d5
@ -1,175 +0,0 @@
|
|||||||
from swarms.agents.multi_modal_workers.multi_modal_agent import MultiModalVisualAgent
|
|
||||||
from swarms.agents.message import Message
|
|
||||||
|
|
||||||
class MultiModalAgent:
|
|
||||||
"""
|
|
||||||
A user-friendly abstraction over the MultiModalVisualAgent that provides a simple interface
|
|
||||||
to process both text and images.
|
|
||||||
|
|
||||||
Initializes the MultiModalAgent.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
load_dict (dict, optional): Dictionary of class names and devices to load. Defaults to a basic configuration.
|
|
||||||
temperature (float, optional): Temperature for the OpenAI model. Defaults to 0.
|
|
||||||
default_language (str, optional): Default language for the agent. Defaults to "English".
|
|
||||||
|
|
||||||
Usage
|
|
||||||
--------------
|
|
||||||
For chats:
|
|
||||||
------------
|
|
||||||
agent = MultiModalAgent()
|
|
||||||
agent.chat("Hello")
|
|
||||||
|
|
||||||
-----------
|
|
||||||
|
|
||||||
Or just with text
|
|
||||||
------------
|
|
||||||
agent = MultiModalAgent()
|
|
||||||
agent.run_text("Hello")
|
|
||||||
|
|
||||||
|
|
||||||
"""
|
|
||||||
def __init__(
|
|
||||||
self,
|
|
||||||
load_dict,
|
|
||||||
temperature,
|
|
||||||
language: str = "english"
|
|
||||||
):
|
|
||||||
self.load_dict = load_dict
|
|
||||||
self.temperature = temperature
|
|
||||||
self.langigage = language
|
|
||||||
|
|
||||||
if load_dict is None:
|
|
||||||
load_dict = {
|
|
||||||
"ImageCaptioning": "default_device"
|
|
||||||
}
|
|
||||||
|
|
||||||
self.agent = MultiModalVisualAgent(
|
|
||||||
load_dict,
|
|
||||||
temperature
|
|
||||||
)
|
|
||||||
self.language = language
|
|
||||||
self.history = []
|
|
||||||
|
|
||||||
|
|
||||||
def run_text(
|
|
||||||
self,
|
|
||||||
text: str = None,
|
|
||||||
language=None
|
|
||||||
):
|
|
||||||
"""Run text through the model"""
|
|
||||||
|
|
||||||
if language is None:
|
|
||||||
language = self.language
|
|
||||||
|
|
||||||
try:
|
|
||||||
self.agent.init_agent(language)
|
|
||||||
return self.agent.run_text(text)
|
|
||||||
except Exception as e:
|
|
||||||
return f"Error processing text: {str(e)}"
|
|
||||||
|
|
||||||
def run_img(
|
|
||||||
self,
|
|
||||||
image_path: str,
|
|
||||||
language=None
|
|
||||||
):
|
|
||||||
"""If language is None"""
|
|
||||||
if language is None:
|
|
||||||
language = self.default_language
|
|
||||||
|
|
||||||
try:
|
|
||||||
return self.agent.run_image(
|
|
||||||
image_path,
|
|
||||||
language
|
|
||||||
)
|
|
||||||
except Exception as error:
|
|
||||||
return f"Error processing image: {str(error)}"
|
|
||||||
|
|
||||||
def chat(
|
|
||||||
self,
|
|
||||||
msg: str = None,
|
|
||||||
language: str = None,
|
|
||||||
streaming: bool = False
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Run chat with the multi-modal agent
|
|
||||||
|
|
||||||
Args:
|
|
||||||
msg (str, optional): Message to send to the agent. Defaults to None.
|
|
||||||
language (str, optional): Language to use. Defaults to None.
|
|
||||||
streaming (bool, optional): Whether to stream the response. Defaults to False.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
str: Response from the agent
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
--------------
|
|
||||||
agent = MultiModalAgent()
|
|
||||||
agent.chat("Hello")
|
|
||||||
|
|
||||||
"""
|
|
||||||
if language is None:
|
|
||||||
language = self.default_language
|
|
||||||
|
|
||||||
#add users message to the history
|
|
||||||
self.history.append(
|
|
||||||
Message(
|
|
||||||
"User",
|
|
||||||
msg
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
#process msg
|
|
||||||
try:
|
|
||||||
self.agent.init_agent(language)
|
|
||||||
response = self.agent.run_text(msg)
|
|
||||||
|
|
||||||
#add agent's response to the history
|
|
||||||
self.history.append(
|
|
||||||
Message(
|
|
||||||
"Agent",
|
|
||||||
response
|
|
||||||
)
|
|
||||||
)
|
|
||||||
|
|
||||||
#if streaming is = True
|
|
||||||
if streaming:
|
|
||||||
return self._stream_response(response)
|
|
||||||
else:
|
|
||||||
response
|
|
||||||
|
|
||||||
except Exception as error:
|
|
||||||
error_message = f"Error processing message: {str(error)}"
|
|
||||||
|
|
||||||
#add error to history
|
|
||||||
self.history.append(
|
|
||||||
Message(
|
|
||||||
"Agent",
|
|
||||||
error_message
|
|
||||||
)
|
|
||||||
)
|
|
||||||
return error_message
|
|
||||||
|
|
||||||
def _stream_response(
|
|
||||||
self,
|
|
||||||
response: str = None
|
|
||||||
):
|
|
||||||
"""
|
|
||||||
Yield the response token by token (word by word)
|
|
||||||
|
|
||||||
Usage:
|
|
||||||
--------------
|
|
||||||
for token in _stream_response(response):
|
|
||||||
print(token)
|
|
||||||
|
|
||||||
"""
|
|
||||||
for token in response.split():
|
|
||||||
yield token
|
|
||||||
|
|
||||||
def clear(self):
|
|
||||||
"""Clear agent's memory"""
|
|
||||||
try:
|
|
||||||
self.agent.clear_memory()
|
|
||||||
except Exception as e:
|
|
||||||
return f"Error cleaning memory: {str(e)}"
|
|
||||||
|
|
@ -1,30 +1,36 @@
|
|||||||
from swarms.agents.multi_modal_workers.omni_agent.omni_chat import chat_huggingface
|
from swarms.agents.multi_modal_workers.omni_agent.omni_chat import chat_huggingface
|
||||||
|
|
||||||
|
|
||||||
class OmniModalAgent:
|
# class OmniModalAgent:
|
||||||
def __init__(
|
# def __init__(
|
||||||
self,
|
# self,
|
||||||
api_key,
|
# api_key,
|
||||||
api_endpoint,
|
# api_endpoint,
|
||||||
api_type
|
# api_type
|
||||||
):
|
# ):
|
||||||
self.api_key = api_key
|
# self.api_key = api_key
|
||||||
self.api_endpoint = api_endpoint
|
# self.api_endpoint = api_endpoint
|
||||||
self.api_type = api_type
|
# self.api_type = api_type
|
||||||
|
|
||||||
def chat(
|
|
||||||
self,
|
|
||||||
data
|
|
||||||
):
|
|
||||||
"""Chat with omni-modality model that uses huggingface to query for a specific model at run time. Translate text to speech, create images and more"""
|
|
||||||
messages = data.get("messages")
|
|
||||||
api_key = data.get("api_key", self.api_key)
|
|
||||||
api_endpoint = data.get("api_endpoint", self.api_endpoint)
|
|
||||||
api_type = data.get("api_type", self.api_type)
|
|
||||||
|
|
||||||
if not(api_key and api_type and api_endpoint):
|
|
||||||
raise ValueError("Please provide api_key, api_type, and api_endpoint")
|
|
||||||
|
|
||||||
response = chat_huggingface(messages, api_key, api_type, api_endpoint)
|
|
||||||
return response
|
|
||||||
|
|
||||||
|
# def chat(
|
||||||
|
# self,
|
||||||
|
# data
|
||||||
|
# ):
|
||||||
|
# """Chat with omni-modality model that uses huggingface to query for a specific model at run time. Translate text to speech, create images and more"""
|
||||||
|
# messages = data.get("messages")
|
||||||
|
# api_key = data.get("api_key", self.api_key)
|
||||||
|
# api_endpoint = data.get("api_endpoint", self.api_endpoint)
|
||||||
|
# api_type = data.get("api_type", self.api_type)
|
||||||
|
|
||||||
|
# if not(api_key and api_type and api_endpoint):
|
||||||
|
# raise ValueError("Please provide api_key, api_type, and api_endpoint")
|
||||||
|
|
||||||
|
# response = chat_huggingface(messages, api_key, api_type, api_endpoint)
|
||||||
|
# return response
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
# class OmniModalAgent:
|
||||||
|
# def __init__(
|
||||||
|
|
||||||
|
# )
|
@ -0,0 +1,8 @@
|
|||||||
|
|
||||||
|
|
||||||
|
def stream(response):
|
||||||
|
"""
|
||||||
|
Yield the response token by token (word by word) from llm
|
||||||
|
"""
|
||||||
|
for token in response.split():
|
||||||
|
yield token
|
Loading…
Reference in new issue