parent
e49d85b65c
commit
1808da08d5
@ -1,175 +0,0 @@
|
||||
from swarms.agents.multi_modal_workers.multi_modal_agent import MultiModalVisualAgent
|
||||
from swarms.agents.message import Message
|
||||
|
||||
class MultiModalAgent:
|
||||
"""
|
||||
A user-friendly abstraction over the MultiModalVisualAgent that provides a simple interface
|
||||
to process both text and images.
|
||||
|
||||
Initializes the MultiModalAgent.
|
||||
|
||||
Parameters:
|
||||
load_dict (dict, optional): Dictionary of class names and devices to load. Defaults to a basic configuration.
|
||||
temperature (float, optional): Temperature for the OpenAI model. Defaults to 0.
|
||||
default_language (str, optional): Default language for the agent. Defaults to "English".
|
||||
|
||||
Usage
|
||||
--------------
|
||||
For chats:
|
||||
------------
|
||||
agent = MultiModalAgent()
|
||||
agent.chat("Hello")
|
||||
|
||||
-----------
|
||||
|
||||
Or just with text
|
||||
------------
|
||||
agent = MultiModalAgent()
|
||||
agent.run_text("Hello")
|
||||
|
||||
|
||||
"""
|
||||
def __init__(
|
||||
self,
|
||||
load_dict,
|
||||
temperature,
|
||||
language: str = "english"
|
||||
):
|
||||
self.load_dict = load_dict
|
||||
self.temperature = temperature
|
||||
self.langigage = language
|
||||
|
||||
if load_dict is None:
|
||||
load_dict = {
|
||||
"ImageCaptioning": "default_device"
|
||||
}
|
||||
|
||||
self.agent = MultiModalVisualAgent(
|
||||
load_dict,
|
||||
temperature
|
||||
)
|
||||
self.language = language
|
||||
self.history = []
|
||||
|
||||
|
||||
def run_text(
|
||||
self,
|
||||
text: str = None,
|
||||
language=None
|
||||
):
|
||||
"""Run text through the model"""
|
||||
|
||||
if language is None:
|
||||
language = self.language
|
||||
|
||||
try:
|
||||
self.agent.init_agent(language)
|
||||
return self.agent.run_text(text)
|
||||
except Exception as e:
|
||||
return f"Error processing text: {str(e)}"
|
||||
|
||||
def run_img(
|
||||
self,
|
||||
image_path: str,
|
||||
language=None
|
||||
):
|
||||
"""If language is None"""
|
||||
if language is None:
|
||||
language = self.default_language
|
||||
|
||||
try:
|
||||
return self.agent.run_image(
|
||||
image_path,
|
||||
language
|
||||
)
|
||||
except Exception as error:
|
||||
return f"Error processing image: {str(error)}"
|
||||
|
||||
def chat(
|
||||
self,
|
||||
msg: str = None,
|
||||
language: str = None,
|
||||
streaming: bool = False
|
||||
):
|
||||
"""
|
||||
Run chat with the multi-modal agent
|
||||
|
||||
Args:
|
||||
msg (str, optional): Message to send to the agent. Defaults to None.
|
||||
language (str, optional): Language to use. Defaults to None.
|
||||
streaming (bool, optional): Whether to stream the response. Defaults to False.
|
||||
|
||||
Returns:
|
||||
str: Response from the agent
|
||||
|
||||
Usage:
|
||||
--------------
|
||||
agent = MultiModalAgent()
|
||||
agent.chat("Hello")
|
||||
|
||||
"""
|
||||
if language is None:
|
||||
language = self.default_language
|
||||
|
||||
#add users message to the history
|
||||
self.history.append(
|
||||
Message(
|
||||
"User",
|
||||
msg
|
||||
)
|
||||
)
|
||||
|
||||
#process msg
|
||||
try:
|
||||
self.agent.init_agent(language)
|
||||
response = self.agent.run_text(msg)
|
||||
|
||||
#add agent's response to the history
|
||||
self.history.append(
|
||||
Message(
|
||||
"Agent",
|
||||
response
|
||||
)
|
||||
)
|
||||
|
||||
#if streaming is = True
|
||||
if streaming:
|
||||
return self._stream_response(response)
|
||||
else:
|
||||
response
|
||||
|
||||
except Exception as error:
|
||||
error_message = f"Error processing message: {str(error)}"
|
||||
|
||||
#add error to history
|
||||
self.history.append(
|
||||
Message(
|
||||
"Agent",
|
||||
error_message
|
||||
)
|
||||
)
|
||||
return error_message
|
||||
|
||||
def _stream_response(
|
||||
self,
|
||||
response: str = None
|
||||
):
|
||||
"""
|
||||
Yield the response token by token (word by word)
|
||||
|
||||
Usage:
|
||||
--------------
|
||||
for token in _stream_response(response):
|
||||
print(token)
|
||||
|
||||
"""
|
||||
for token in response.split():
|
||||
yield token
|
||||
|
||||
def clear(self):
|
||||
"""Clear agent's memory"""
|
||||
try:
|
||||
self.agent.clear_memory()
|
||||
except Exception as e:
|
||||
return f"Error cleaning memory: {str(e)}"
|
||||
|
@ -1,30 +1,36 @@
|
||||
from swarms.agents.multi_modal_workers.omni_agent.omni_chat import chat_huggingface
|
||||
|
||||
|
||||
class OmniModalAgent:
|
||||
def __init__(
|
||||
self,
|
||||
api_key,
|
||||
api_endpoint,
|
||||
api_type
|
||||
):
|
||||
self.api_key = api_key
|
||||
self.api_endpoint = api_endpoint
|
||||
self.api_type = api_type
|
||||
|
||||
def chat(
|
||||
self,
|
||||
data
|
||||
):
|
||||
"""Chat with omni-modality model that uses huggingface to query for a specific model at run time. Translate text to speech, create images and more"""
|
||||
messages = data.get("messages")
|
||||
api_key = data.get("api_key", self.api_key)
|
||||
api_endpoint = data.get("api_endpoint", self.api_endpoint)
|
||||
api_type = data.get("api_type", self.api_type)
|
||||
|
||||
if not(api_key and api_type and api_endpoint):
|
||||
raise ValueError("Please provide api_key, api_type, and api_endpoint")
|
||||
|
||||
response = chat_huggingface(messages, api_key, api_type, api_endpoint)
|
||||
return response
|
||||
# class OmniModalAgent:
|
||||
# def __init__(
|
||||
# self,
|
||||
# api_key,
|
||||
# api_endpoint,
|
||||
# api_type
|
||||
# ):
|
||||
# self.api_key = api_key
|
||||
# self.api_endpoint = api_endpoint
|
||||
# self.api_type = api_type
|
||||
|
||||
# def chat(
|
||||
# self,
|
||||
# data
|
||||
# ):
|
||||
# """Chat with omni-modality model that uses huggingface to query for a specific model at run time. Translate text to speech, create images and more"""
|
||||
# messages = data.get("messages")
|
||||
# api_key = data.get("api_key", self.api_key)
|
||||
# api_endpoint = data.get("api_endpoint", self.api_endpoint)
|
||||
# api_type = data.get("api_type", self.api_type)
|
||||
|
||||
# if not(api_key and api_type and api_endpoint):
|
||||
# raise ValueError("Please provide api_key, api_type, and api_endpoint")
|
||||
|
||||
# response = chat_huggingface(messages, api_key, api_type, api_endpoint)
|
||||
# return response
|
||||
|
||||
|
||||
|
||||
# class OmniModalAgent:
|
||||
# def __init__(
|
||||
|
||||
# )
|
@ -0,0 +1,8 @@
|
||||
|
||||
|
||||
def stream(response):
|
||||
"""
|
||||
Yield the response token by token (word by word) from llm
|
||||
"""
|
||||
for token in response.split():
|
||||
yield token
|
Loading…
Reference in new issue