openai model

Former-commit-id: 20b1020a2e
discord-bot-framework
Kye 1 year ago
parent 0f8a9f79e7
commit 1e9cbc239a

@ -15,6 +15,7 @@ import requests
from bs4 import BeautifulSoup from bs4 import BeautifulSoup
import os import os
class Paper: class Paper:
def __init__(self, title, date, authors, abstract): def __init__(self, title, date, authors, abstract):
self.title = title self.title = title
@ -22,33 +23,37 @@ class Paper:
self.authors = authors self.authors = authors
self.abstract = abstract self.abstract = abstract
class Scraper: class Scraper:
def __init__(self, url): def __init__(self, url):
self.url = url self.url = url
def get_paper_links(self): def get_paper_links(self):
response = requests.get(self.url) response = requests.get(self.url)
soup = BeautifulSoup(response.text, 'html.parser') soup = BeautifulSoup(response.text, "html.parser")
links = [a['href'] for a in soup.find_all('a', href=True) if '/papers/' in a['href']] links = [
a["href"] for a in soup.find_all("a", href=True) if "/papers/" in a["href"]
]
return links return links
def get_paper_details(self, link): def get_paper_details(self, link):
response = requests.get(self.url + link) response = requests.get(self.url + link)
soup = BeautifulSoup(response.text, 'html.parser') soup = BeautifulSoup(response.text, "html.parser")
title = soup.find('h1').text title = soup.find("h1").text
date_tag = soup.find('time') date_tag = soup.find("time")
date = date_tag.text if date_tag else 'Unknown' date = date_tag.text if date_tag else "Unknown"
authors = [author.text for author in soup.find_all('span', class_='author')] authors = [author.text for author in soup.find_all("span", class_="author")]
abstract_tag = soup.find('div', class_='abstract') abstract_tag = soup.find("div", class_="abstract")
abstract = abstract_tag.text if abstract_tag else 'Abstract not found' abstract = abstract_tag.text if abstract_tag else "Abstract not found"
return Paper(title, date, authors, abstract) return Paper(title, date, authors, abstract)
class FileWriter: class FileWriter:
def __init__(self, directory): def __init__(self, directory):
self.directory = directory self.directory = directory
def write_paper(self, paper): def write_paper(self, paper):
with open(os.path.join(self.directory, paper.title + '.txt'), 'w') as f: with open(os.path.join(self.directory, paper.title + ".txt"), "w") as f:
f.write(f"h1: {paper.title}\n") f.write(f"h1: {paper.title}\n")
f.write(f"Published on {paper.date}\n") f.write(f"Published on {paper.date}\n")
f.write("Authors:\n") f.write("Authors:\n")
@ -57,10 +62,11 @@ class FileWriter:
f.write("Abstract\n") f.write("Abstract\n")
f.write(paper.abstract) f.write(paper.abstract)
scraper = Scraper('https://huggingface.co/papers')
file_writer = FileWriter('images') scraper = Scraper("https://huggingface.co/papers")
file_writer = FileWriter("images")
links = scraper.get_paper_links() links = scraper.get_paper_links()
for link in links: for link in links:
paper = scraper.get_paper_details(link) paper = scraper.get_paper_details(link)
file_writer.write_paper(paper) file_writer.write_paper(paper)

@ -0,0 +1,196 @@
# `BaseOpenAI` and `OpenAI` Documentation
## Table of Contents
1. [Overview](#overview)
2. [Class Architecture](#class-architecture)
3. [Purpose](#purpose)
4. [Class Attributes](#class-attributes)
5. [Methods](#methods)
- [Construction](#construction)
- [Configuration](#configuration)
- [Tokenization](#tokenization)
- [Generation](#generation)
- [Asynchronous Generation](#asynchronous-generation)
6. [Usage Examples](#usage-examples)
- [Creating an OpenAI Object](#creating-an-openai-object)
- [Generating Text](#generating-text)
- [Advanced Configuration](#advanced-configuration)
---
## 1. Overview <a name="overview"></a>
The `BaseOpenAI` and `OpenAI` classes are part of the LangChain library, designed to interact with OpenAI's large language models (LLMs). These classes provide a seamless interface for utilizing OpenAI's API to generate natural language text.
## 2. Class Architecture <a name="class-architecture"></a>
Both `BaseOpenAI` and `OpenAI` classes inherit from `BaseLLM`, demonstrating an inheritance-based architecture. This architecture allows for easy extensibility and customization while adhering to the principles of object-oriented programming.
## 3. Purpose <a name="purpose"></a>
The purpose of these classes is to simplify the interaction with OpenAI's LLMs. They encapsulate API calls, handle tokenization, and provide a high-level interface for generating text. By instantiating an object of the `OpenAI` class, developers can quickly leverage the power of OpenAI's models to generate text for various applications, such as chatbots, content generation, and more.
## 4. Class Attributes <a name="class-attributes"></a>
Here are the key attributes and their descriptions for the `BaseOpenAI` and `OpenAI` classes:
| Attribute | Description |
|---------------------------|-------------|
| `lc_secrets` | A dictionary of secrets required for LangChain, including the OpenAI API key. |
| `lc_attributes` | A dictionary of attributes relevant to LangChain. |
| `is_lc_serializable()` | A method indicating if the class is serializable for LangChain. |
| `model_name` | The name of the language model to use. |
| `temperature` | The sampling temperature for text generation. |
| `max_tokens` | The maximum number of tokens to generate in a completion. |
| `top_p` | The total probability mass of tokens to consider at each step. |
| `frequency_penalty` | Penalizes repeated tokens according to frequency. |
| `presence_penalty` | Penalizes repeated tokens. |
| `n` | How many completions to generate for each prompt. |
| `best_of` | Generates `best_of` completions server-side and returns the "best." |
| `model_kwargs` | Holds any model parameters valid for `create` calls not explicitly specified. |
| `openai_api_key` | The OpenAI API key used for authentication. |
| `openai_api_base` | The base URL for the OpenAI API. |
| `openai_organization` | The OpenAI organization name, if applicable. |
| `openai_proxy` | An explicit proxy URL for OpenAI requests. |
| `batch_size` | The batch size to use when passing multiple documents for generation. |
| `request_timeout` | The timeout for requests to the OpenAI completion API. |
| `logit_bias` | Adjustment to the probability of specific tokens being generated. |
| `max_retries` | The maximum number of retries to make when generating. |
| `streaming` | Whether to stream the results or not. |
| `allowed_special` | A set of special tokens that are allowed. |
| `disallowed_special` | A collection of special tokens that are not allowed. |
| `tiktoken_model_name` | The model name to pass to `tiktoken` for token counting. |
## 5. Methods <a name="methods"></a>
### 5.1 Construction <a name="construction"></a>
#### 5.1.1 `__new__(cls, **data: Any) -> Union[OpenAIChat, BaseOpenAI]`
- Description: Initializes the OpenAI object.
- Arguments:
- `cls` (class): The class instance.
- `data` (dict): Additional data for initialization.
- Returns:
- Union[OpenAIChat, BaseOpenAI]: An instance of the OpenAI class.
### 5.2 Configuration <a name="configuration"></a>
#### 5.2.1 `build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]`
- Description: Builds extra kwargs from additional params passed in.
- Arguments:
- `cls` (class): The class instance.
- `values` (dict): Values and parameters to build extra kwargs.
- Returns:
- Dict[str, Any]: A dictionary of built extra kwargs.
#### 5.2.2 `validate_environment(cls, values: Dict) -> Dict`
- Description: Validates that the API key and python package exist in the environment.
- Arguments:
- `values` (dict): The class values and parameters.
- Returns:
- Dict: A dictionary of validated values.
### 5.3 Tokenization <a name="tokenization"></a>
#### 5.3.1 `get_sub_prompts(self, params: Dict[str, Any], prompts: List[str], stop: Optional[List[str]] = None) -> List[List[str]]`
- Description: Gets sub-prompts for LLM call.
- Arguments:
- `params` (dict): Parameters for LLM call.
- `prompts` (list): List of prompts.
- `stop` (list, optional): List of stop words.
- Returns:
- List[List[str]]: List of sub-prompts.
#### 5.3.2 `get_token_ids(self, text: str) -> List[int]`
- Description: Gets token IDs using the `tiktoken` package.
- Arguments:
- `text` (str): The text for which to calculate token IDs.
- Returns:
- List[int]: A list of token IDs.
#### 5.3.3 `modelname_to_contextsize(modelname: str) -> int`
- Description: Calculates the maximum number of tokens possible to generate for a model.
- Arguments:
- `modelname` (str): The model name to determine the context size for.
- Returns:
- int: The maximum context size.
#### 5.3.4 `max_tokens_for_prompt(self, prompt: str) -> int`
- Description: Calculates the maximum number of tokens possible to generate for a prompt.
- Arguments:
- `prompt` (str): The prompt for which to
determine the maximum token limit.
- Returns:
- int: The maximum token limit.
### 5.4 Generation <a name="generation"></a>
#### 5.4.1 `generate(self, text: Union[str, List[str]], **kwargs) -> Union[str, List[str]]`
- Description: Generates text using the OpenAI API.
- Arguments:
- `text` (str or list): The input text or list of inputs.
- `**kwargs` (dict): Additional parameters for the generation process.
- Returns:
- Union[str, List[str]]: The generated text or list of generated texts.
### 5.5 Asynchronous Generation <a name="asynchronous-generation"></a>
#### 5.5.1 `generate_async(self, text: Union[str, List[str]], **kwargs) -> Union[str, List[str]]`
- Description: Generates text asynchronously using the OpenAI API.
- Arguments:
- `text` (str or list): The input text or list of inputs.
- `**kwargs` (dict): Additional parameters for the asynchronous generation process.
- Returns:
- Union[str, List[str]]: The generated text or list of generated texts.
## 6. Usage Examples <a name="usage-examples"></a>
### 6.1 Creating an OpenAI Object <a name="creating-an-openai-object"></a>
```python
# Import the OpenAI class
from swarms.models import OpenAI
# Set your OpenAI API key
api_key = "YOUR_API_KEY"
# Create an OpenAI object
openai = OpenAI(api_key)
```
### 6.2 Generating Text <a name="generating-text"></a>
```python
# Generate text from a single prompt
prompt = "Translate the following English text to French: 'Hello, how are you?'"
generated_text = openai.generate(prompt, max_tokens=50)
# Generate text from multiple prompts
prompts = ["Translate this: 'Good morning' to Spanish.", "Summarize the following article:", article_text]
generated_texts = openai.generate(prompts, max_tokens=100)
# Generate text asynchronously
async_prompt = "Translate 'Thank you' into German."
async_result = openai.generate_async(async_prompt, max_tokens=30)
# Access the result of an asynchronous generation
async_result_text = async_result.get()
```
### 6.3 Advanced Configuration <a name="advanced-configuration"></a>
```python
# Configure generation with advanced options
custom_options = {
"temperature": 0.7,
"max_tokens": 100,
"top_p": 0.9,
"frequency_penalty": 0.2,
"presence_penalty": 0.4
}
generated_text = openai.generate(prompt, **custom_options)
```
This documentation provides a comprehensive understanding of the `BaseOpenAI` and `OpenAI` classes, their attributes, methods, and usage examples. Developers can utilize these classes to interact with OpenAI's language models efficiently, enabling various natural language generation tasks.

@ -92,6 +92,7 @@ nav:
- Overview: "swarms/models/index.md" - Overview: "swarms/models/index.md"
- HuggingFaceLLM: "swarms/models/hf.md" - HuggingFaceLLM: "swarms/models/hf.md"
- Anthropic: "swarms/models/anthropic.md" - Anthropic: "swarms/models/anthropic.md"
- OpenAI: "swarms/modeks/openai.md"
- swarms.structs: - swarms.structs:
- Overview: "swarms/structs/overview.md" - Overview: "swarms/structs/overview.md"
- Workflow: "swarms/structs/workflow.md" - Workflow: "swarms/structs/workflow.md"

@ -50,7 +50,9 @@ open-interpreter = "*"
tabulate = "*" tabulate = "*"
termcolor = "*" termcolor = "*"
black = "*" black = "*"
dalle = "*" dalle3 = "*"
torchvision = "*"
[tool.poetry.dev-dependencies] [tool.poetry.dev-dependencies]
first_dependency = {git = "https://github.com/IDEA-Research/GroundingDINO.git"} first_dependency = {git = "https://github.com/IDEA-Research/GroundingDINO.git"}

@ -52,6 +52,7 @@ webdataset
yapf yapf
autopep8 autopep8
dalle3 dalle3
torchvision
mkdocs mkdocs

@ -9,4 +9,3 @@ from swarms.agents.stream_response import stream
from swarms.agents.base import AbstractAgent from swarms.agents.base import AbstractAgent
from swarms.agents.registry import Registry from swarms.agents.registry import Registry
from swarms.agents.idea_to_image_agent import Idea2Image from swarms.agents.idea_to_image_agent import Idea2Image

@ -108,4 +108,3 @@ class Idea2Image:
# Download the images to your specified folder # Download the images to your specified folder
self.dalle.download(urls, self.output_folder) self.dalle.download(urls, self.output_folder)

@ -3,4 +3,4 @@ from swarms.models.petals import Petals
from swarms.models.mistral import Mistral from swarms.models.mistral import Mistral
# from swarms.models.openai_llm import OpenAIModel # from swarms.models.openai_llm import OpenAIModel
from swarms.models.openai_models import OpenAI, AzureOpenAI, OpenAIChat from swarms.models.openai_models import OpenAI, AzureOpenAI, OpenAIChat

@ -0,0 +1,3 @@
"""An ultra fast speech to text model."""

@ -12,6 +12,7 @@ TEST_OUTPUT_FOLDER = "test_images/"
OPENAI_API_KEY = openai_key OPENAI_API_KEY = openai_key
DALLE_COOKIE = dalle_cookie DALLE_COOKIE = dalle_cookie
@pytest.fixture(scope="module") @pytest.fixture(scope="module")
def idea2image_instance(): def idea2image_instance():
# Create an instance of the Idea2Image class # Create an instance of the Idea2Image class
@ -26,15 +27,18 @@ def idea2image_instance():
if os.path.exists(TEST_OUTPUT_FOLDER): if os.path.exists(TEST_OUTPUT_FOLDER):
shutil.rmtree(TEST_OUTPUT_FOLDER) shutil.rmtree(TEST_OUTPUT_FOLDER)
def test_idea2image_instance(idea2image_instance): def test_idea2image_instance(idea2image_instance):
# Check if the instance is created successfully # Check if the instance is created successfully
assert isinstance(idea2image_instance, Idea2Image) assert isinstance(idea2image_instance, Idea2Image)
def test_llm_prompt(idea2image_instance): def test_llm_prompt(idea2image_instance):
# Test the llm_prompt method # Test the llm_prompt method
prompt = idea2image_instance.llm_prompt() prompt = idea2image_instance.llm_prompt()
assert isinstance(prompt, str) assert isinstance(prompt, str)
def test_generate_image(idea2image_instance): def test_generate_image(idea2image_instance):
# Test the generate_image method # Test the generate_image method
idea2image_instance.generate_image() idea2image_instance.generate_image()
@ -44,6 +48,7 @@ def test_generate_image(idea2image_instance):
files = os.listdir(TEST_OUTPUT_FOLDER) files = os.listdir(TEST_OUTPUT_FOLDER)
assert len(files) > 0 assert len(files) > 0
def test_invalid_openai_api_key(): def test_invalid_openai_api_key():
# Test with an invalid OpenAI API key # Test with an invalid OpenAI API key
with pytest.raises(Exception) as exc_info: with pytest.raises(Exception) as exc_info:
@ -55,5 +60,6 @@ def test_invalid_openai_api_key():
) )
assert "Failed to initialize OpenAIChat" in str(exc_info.value) assert "Failed to initialize OpenAIChat" in str(exc_info.value)
if __name__ == "__main__": if __name__ == "__main__":
pytest.main() pytest.main()

Loading…
Cancel
Save