parent
60faf95401
commit
2463ca0644
@ -1,2 +1,47 @@
|
||||
# many boss + workers in unison
|
||||
#kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)`
|
||||
#kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)`
|
||||
|
||||
import concurrent.futures
|
||||
import logging
|
||||
|
||||
from swarms.swarms import Swarms
|
||||
from swarms.tools.agent_tools import *
|
||||
|
||||
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
|
||||
|
||||
|
||||
class HiveMind:
|
||||
def __init__(self, openai_api_key="", num_swarms=1, max_workers=None):
|
||||
self.openai_api_key = openai_api_key
|
||||
self.num_swarms = num_swarms
|
||||
self.swarms = [Swarms(openai_api_key) for _ in range(num_swarms)]
|
||||
self.vectorstore = self.initialize_vectorstore()
|
||||
self.max_workers = max_workers if max_workers else min(32, num_swarms)
|
||||
|
||||
def initialize_vectorstore(self):
|
||||
try:
|
||||
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
|
||||
embedding_size = 1536
|
||||
index = faiss.IndexFlatL2(embedding_size)
|
||||
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
|
||||
except Exception as e:
|
||||
logging.error(f"Failed to initialize vector store: {e}")
|
||||
raise
|
||||
|
||||
def run_swarm(self, swarm, objective):
|
||||
try:
|
||||
return swarm.run_swarms(objective)
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred in run_swarms: {e}")
|
||||
|
||||
def run_swarms(self, objective, timeout=None):
|
||||
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
|
||||
futures = {executor.submit(self.run_swarm, swarm, objective) for swarm in self.swarms}
|
||||
results = []
|
||||
for future in concurrent.futures.as_completed(futures, timeout=timeout):
|
||||
try:
|
||||
results.append(future.result())
|
||||
except Exception as e:
|
||||
logging.error(f"An error occurred in a swarm: {e}")
|
||||
return results
|
Loading…
Reference in new issue