parent
7a35e329f2
commit
25f3e5f61b
@ -0,0 +1,387 @@
|
|||||||
|
# The Swarms Tool System: Functions, Pydantic BaseModels as Tools, and Radical Customization
|
||||||
|
|
||||||
|
|
||||||
|
This guide provides an in-depth look at the Swarms Tool System, focusing on its functions, the use of Pydantic BaseModels as tools, and the extensive customization options available. Aimed at developers, this documentation highlights how the Swarms framework works and offers detailed examples of creating and customizing tools and agents, specifically for accounting tasks.
|
||||||
|
|
||||||
|
The Swarms Tool System is a flexible and extensible component of the Swarms framework that allows for the creation, registration, and utilization of various tools. These tools can perform a wide range of tasks and are integrated into agents to provide specific functionalities. The system supports multiple ways to define tools, including using Pydantic BaseModels, functions, and dictionaries.
|
||||||
|
|
||||||
|
### Architecture
|
||||||
|
|
||||||
|
The architecture of the Swarms Tool System is designed to be highly modular. It consists of the following main components:
|
||||||
|
|
||||||
|
1. **Agents:** The primary entities that execute tasks.
|
||||||
|
2. **Tools:** Functions or classes that perform specific operations.
|
||||||
|
3. **Schemas:** Definitions of input and output data formats using Pydantic BaseModels.
|
||||||
|
|
||||||
|
### Key Concepts
|
||||||
|
|
||||||
|
#### Tools
|
||||||
|
|
||||||
|
Tools are the core functional units within the Swarms framework. They can be defined in various ways:
|
||||||
|
|
||||||
|
- **Pydantic BaseModels**: Tools can be defined using Pydantic BaseModels to ensure data validation and serialization.
|
||||||
|
- **Functions**: Tools can be simple or complex functions.
|
||||||
|
- **Dictionaries**: Tools can be represented as dictionaries for flexibility.
|
||||||
|
|
||||||
|
#### Agents
|
||||||
|
|
||||||
|
Agents utilize tools to perform tasks. They are configured with a set of tools and schemas, and they execute the tools based on the input they receive.
|
||||||
|
|
||||||
|
## Detailed Documentation
|
||||||
|
|
||||||
|
### Tool Definition
|
||||||
|
|
||||||
|
#### Using Pydantic BaseModels
|
||||||
|
|
||||||
|
Pydantic BaseModels provide a structured way to define tool inputs and outputs. They ensure data validation and serialization, making them ideal for complex data handling.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
|
||||||
|
Define Pydantic BaseModels for accounting tasks:
|
||||||
|
|
||||||
|
```python
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
class CalculateTax(BaseModel):
|
||||||
|
income: float
|
||||||
|
|
||||||
|
class GenerateInvoice(BaseModel):
|
||||||
|
client_name: str
|
||||||
|
amount: float
|
||||||
|
date: str
|
||||||
|
|
||||||
|
class SummarizeExpenses(BaseModel):
|
||||||
|
expenses: list[dict]
|
||||||
|
```
|
||||||
|
|
||||||
|
Define tool functions using these models:
|
||||||
|
|
||||||
|
```python
|
||||||
|
def calculate_tax(data: CalculateTax) -> dict:
|
||||||
|
tax_rate = 0.3 # Example tax rate
|
||||||
|
tax = data.income * tax_rate
|
||||||
|
return {"income": data.income, "tax": tax}
|
||||||
|
|
||||||
|
def generate_invoice(data: GenerateInvoice) -> dict:
|
||||||
|
invoice = {
|
||||||
|
"client_name": data.client_name,
|
||||||
|
"amount": data.amount,
|
||||||
|
"date": data.date,
|
||||||
|
"invoice_id": "INV12345"
|
||||||
|
}
|
||||||
|
return invoice
|
||||||
|
|
||||||
|
def summarize_expenses(data: SummarizeExpenses) -> dict:
|
||||||
|
total_expenses = sum(expense['amount'] for expense in data.expenses)
|
||||||
|
return {"total_expenses": total_expenses}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Using Functions Directly
|
||||||
|
|
||||||
|
Tools can also be defined directly as functions without using Pydantic models. This approach is suitable for simpler tasks where complex validation is not required.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
|
||||||
|
```python
|
||||||
|
def basic_tax_calculation(income: float) -> dict:
|
||||||
|
tax_rate = 0.25
|
||||||
|
tax = income * tax_rate
|
||||||
|
return {"income": income, "tax": tax}
|
||||||
|
```
|
||||||
|
|
||||||
|
#### Using Dictionaries
|
||||||
|
|
||||||
|
Tools can be represented as dictionaries, providing maximum flexibility. This method is useful when the tool's functionality is more dynamic or when integrating with external systems.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
|
||||||
|
```python
|
||||||
|
basic_tool_schema = {
|
||||||
|
"name": "basic_tax_tool",
|
||||||
|
"description": "A basic tax calculation tool",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"income": {"type": "number", "description": "Income amount"}
|
||||||
|
},
|
||||||
|
"required": ["income"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
def basic_tax_tool(income: float) -> dict:
|
||||||
|
tax_rate = 0.2
|
||||||
|
tax = income * tax_rate
|
||||||
|
return {"income": income, "tax": tax}
|
||||||
|
```
|
||||||
|
|
||||||
|
### Tool Registration
|
||||||
|
|
||||||
|
Tools need to be registered with the agent for it to utilize them. This can be done by specifying the tools in the `tools` parameter during agent initialization.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
|
||||||
|
```python
|
||||||
|
from swarms import Agent
|
||||||
|
from llama_hosted import llama3Hosted
|
||||||
|
|
||||||
|
# Define Pydantic BaseModels for accounting tasks
|
||||||
|
class CalculateTax(BaseModel):
|
||||||
|
income: float
|
||||||
|
|
||||||
|
class GenerateInvoice(BaseModel):
|
||||||
|
client_name: str
|
||||||
|
amount: float
|
||||||
|
date: str
|
||||||
|
|
||||||
|
class SummarizeExpenses(BaseModel):
|
||||||
|
expenses: list[dict]
|
||||||
|
|
||||||
|
# Define tool functions using these models
|
||||||
|
def calculate_tax(data: CalculateTax) -> dict:
|
||||||
|
tax_rate = 0.3
|
||||||
|
tax = data.income * tax_rate
|
||||||
|
return {"income": data.income, "tax": tax}
|
||||||
|
|
||||||
|
def generate_invoice(data: GenerateInvoice) -> dict:
|
||||||
|
invoice = {
|
||||||
|
"client_name": data.client_name,
|
||||||
|
"amount": data.amount,
|
||||||
|
"date": data.date,
|
||||||
|
"invoice_id": "INV12345"
|
||||||
|
}
|
||||||
|
return invoice
|
||||||
|
|
||||||
|
def summarize_expenses(data: SummarizeExpenses) -> dict:
|
||||||
|
total_expenses = sum(expense['amount'] for expense in data.expenses)
|
||||||
|
return {"total_expenses": total_expenses}
|
||||||
|
|
||||||
|
# Function to generate a tool schema for demonstration purposes
|
||||||
|
def create_tool_schema():
|
||||||
|
return {
|
||||||
|
"name": "execute",
|
||||||
|
"description": "Executes code on the user's machine",
|
||||||
|
"parameters": {
|
||||||
|
"type": "object",
|
||||||
|
"properties": {
|
||||||
|
"language": {
|
||||||
|
"type": "string",
|
||||||
|
"description": "Programming language",
|
||||||
|
"enum": ["python", "java"]
|
||||||
|
},
|
||||||
|
"code": {"type": "string", "description": "Code to execute"}
|
||||||
|
},
|
||||||
|
"required": ["language", "code"]
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
# Initialize the agent with the tools
|
||||||
|
agent = Agent(
|
||||||
|
agent_name="Accounting Agent",
|
||||||
|
system_prompt="This agent assists with various accounting tasks.",
|
||||||
|
sop_list=["Provide accurate and timely accounting services."],
|
||||||
|
llm=llama3Hosted(),
|
||||||
|
max_loops="auto",
|
||||||
|
interactive=True,
|
||||||
|
verbose=True,
|
||||||
|
tool_schema=BaseModel,
|
||||||
|
list_base_models=[
|
||||||
|
CalculateTax,
|
||||||
|
GenerateInvoice,
|
||||||
|
SummarizeExpenses
|
||||||
|
],
|
||||||
|
output_type=str,
|
||||||
|
metadata_output_type="json",
|
||||||
|
function_calling_format_type="OpenAI",
|
||||||
|
function_calling_type="json",
|
||||||
|
tools=[
|
||||||
|
calculate_tax,
|
||||||
|
generate_invoice,
|
||||||
|
summarize_expenses
|
||||||
|
],
|
||||||
|
list_tool_schemas_json=create_tool_schema(),
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Running the Agent
|
||||||
|
|
||||||
|
The agent can execute tasks using the `run` method. This method takes a prompt and determines the appropriate tool to use based on the input.
|
||||||
|
|
||||||
|
**Example:**
|
||||||
|
|
||||||
|
```python
|
||||||
|
# Example task: Calculate tax for an income
|
||||||
|
result = agent.run("Calculate the tax for an income of $50,000.")
|
||||||
|
print(f"Result: {result}")
|
||||||
|
|
||||||
|
# Example task: Generate an invoice
|
||||||
|
invoice_data = agent.run("Generate an invoice for John Doe for $1500 on 2024-06-01.")
|
||||||
|
print(f"Invoice Data: {invoice_data}")
|
||||||
|
|
||||||
|
# Example task: Summarize expenses
|
||||||
|
expenses = [
|
||||||
|
{"amount": 200.0, "description": "Office supplies"},
|
||||||
|
{"amount": 1500.0, "description": "Software licenses"},
|
||||||
|
{"amount": 300.0, "description": "Travel expenses"}
|
||||||
|
]
|
||||||
|
summary = agent.run("Summarize these expenses: " + str(expenses))
|
||||||
|
print(f"Expenses Summary: {summary}")
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### Customizing Tools
|
||||||
|
|
||||||
|
Custom tools can be created to extend the functionality of the Swarms framework. This can include integrating external APIs, performing complex calculations, or handling specialized data formats.
|
||||||
|
|
||||||
|
**Example: Custom Accounting Tool**
|
||||||
|
|
||||||
|
```python
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
class CustomAccountingTool(BaseModel):
|
||||||
|
data: dict
|
||||||
|
|
||||||
|
def custom_accounting_tool(data: CustomAccountingTool) -> dict:
|
||||||
|
# Custom logic for the accounting tool
|
||||||
|
result = {
|
||||||
|
"status": "success",
|
||||||
|
"data_processed": len(data.data)
|
||||||
|
}
|
||||||
|
return result
|
||||||
|
|
||||||
|
# Register the custom tool with the agent
|
||||||
|
agent = Agent(
|
||||||
|
agent_name="Accounting Agent",
|
||||||
|
system_prompt="This agent assists with various accounting tasks.",
|
||||||
|
sop_list=["Provide accurate and timely accounting services."],
|
||||||
|
llm=llama3Hosted(),
|
||||||
|
max_loops="auto",
|
||||||
|
interactive=True,
|
||||||
|
verbose=True,
|
||||||
|
tool_schema=BaseModel,
|
||||||
|
list_base_models=[
|
||||||
|
CalculateTax,
|
||||||
|
GenerateInvoice,
|
||||||
|
SummarizeExpenses,
|
||||||
|
CustomAccountingTool
|
||||||
|
],
|
||||||
|
output_type=str,
|
||||||
|
metadata_output_type="json",
|
||||||
|
function_calling_format_type="OpenAI",
|
||||||
|
function_calling_type="json",
|
||||||
|
tools=[
|
||||||
|
calculate_tax,
|
||||||
|
generate_invoice,
|
||||||
|
summarize_expenses,
|
||||||
|
custom_accounting_tool
|
||||||
|
],
|
||||||
|
list_tool_schemas_json=create_tool_schema(),
|
||||||
|
)
|
||||||
|
```
|
||||||
|
|
||||||
|
### Advanced Customization
|
||||||
|
|
||||||
|
Advanced customization involves modifying the core components of the Swarms framework. This includes extending existing classes, adding new methods, or integrating third-party libraries.
|
||||||
|
|
||||||
|
**Example: Extending the Agent Class**
|
||||||
|
|
||||||
|
```python
|
||||||
|
from swarms import Agent
|
||||||
|
|
||||||
|
class AdvancedAccountingAgent(Agent):
|
||||||
|
def __init__(self, *args, **kwargs):
|
||||||
|
super().__init__(*args, **kwargs)
|
||||||
|
|
||||||
|
def custom_behavior(self):
|
||||||
|
print("Executing custom behavior")
|
||||||
|
|
||||||
|
def another_custom_method(self):
|
||||||
|
print("Another
|
||||||
|
|
||||||
|
custom method")
|
||||||
|
|
||||||
|
# Initialize the advanced agent
|
||||||
|
advanced_agent = AdvancedAccountingAgent(
|
||||||
|
agent_name="Advanced Accounting Agent",
|
||||||
|
system_prompt="This agent performs advanced accounting tasks.",
|
||||||
|
sop_list=["Provide advanced accounting services."],
|
||||||
|
llm=llama3Hosted(),
|
||||||
|
max_loops="auto",
|
||||||
|
interactive=True,
|
||||||
|
verbose=True,
|
||||||
|
tool_schema=BaseModel,
|
||||||
|
list_base_models=[
|
||||||
|
CalculateTax,
|
||||||
|
GenerateInvoice,
|
||||||
|
SummarizeExpenses,
|
||||||
|
CustomAccountingTool
|
||||||
|
],
|
||||||
|
output_type=str,
|
||||||
|
metadata_output_type="json",
|
||||||
|
function_calling_format_type="OpenAI",
|
||||||
|
function_calling_type="json",
|
||||||
|
tools=[
|
||||||
|
calculate_tax,
|
||||||
|
generate_invoice,
|
||||||
|
summarize_expenses,
|
||||||
|
custom_accounting_tool
|
||||||
|
],
|
||||||
|
list_tool_schemas_json=create_tool_schema(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Call custom methods
|
||||||
|
advanced_agent.custom_behavior()
|
||||||
|
advanced_agent.another_custom_method()
|
||||||
|
```
|
||||||
|
|
||||||
|
### Integrating External Libraries
|
||||||
|
|
||||||
|
You can integrate external libraries to extend the functionality of your tools. This is useful for adding new capabilities or leveraging existing libraries for complex tasks.
|
||||||
|
|
||||||
|
**Example: Integrating Pandas for Data Processing**
|
||||||
|
|
||||||
|
```python
|
||||||
|
import pandas as pd
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
class DataFrameTool(BaseModel):
|
||||||
|
data: list[dict]
|
||||||
|
|
||||||
|
def process_data_frame(data: DataFrameTool) -> dict:
|
||||||
|
df = pd.DataFrame(data.data)
|
||||||
|
summary = df.describe().to_dict()
|
||||||
|
return {"summary": summary}
|
||||||
|
|
||||||
|
# Register the tool with the agent
|
||||||
|
agent = Agent(
|
||||||
|
agent_name="Data Processing Agent",
|
||||||
|
system_prompt="This agent processes data frames.",
|
||||||
|
sop_list=["Provide data processing services."],
|
||||||
|
llm=llama3Hosted(),
|
||||||
|
max_loops="auto",
|
||||||
|
interactive=True,
|
||||||
|
verbose=True,
|
||||||
|
tool_schema=BaseModel,
|
||||||
|
list_base_models=[DataFrameTool],
|
||||||
|
output_type=str,
|
||||||
|
metadata_output_type="json",
|
||||||
|
function_calling_format_type="OpenAI",
|
||||||
|
function_calling_type="json",
|
||||||
|
tools=[process_data_frame],
|
||||||
|
list_tool_schemas_json=create_tool_schema(),
|
||||||
|
)
|
||||||
|
|
||||||
|
# Example task: Process a data frame
|
||||||
|
data = [
|
||||||
|
{"col1": 1, "col2": 2},
|
||||||
|
{"col1": 3, "col2": 4},
|
||||||
|
{"col1": 5, "col2": 6}
|
||||||
|
]
|
||||||
|
result = agent.run("Process this data frame: " + str(data))
|
||||||
|
print(f"Data Frame Summary: {result}")
|
||||||
|
```
|
||||||
|
|
||||||
|
## Conclusion
|
||||||
|
|
||||||
|
The Swarms Tool System provides a robust and flexible framework for defining and utilizing tools within agents. By leveraging Pydantic BaseModels, functions, and dictionaries, developers can create highly customized tools to perform a wide range of tasks. The extensive customization options allow for the integration of external libraries and the extension of core components, making the Swarms framework suitable for diverse applications.
|
||||||
|
|
||||||
|
This guide has covered the fundamental concepts and provided detailed examples to help you get started with the Swarms Tool System. With this foundation, you can explore and implement advanced features to build powerful
|
@ -0,0 +1,16 @@
|
|||||||
|
from pydantic import BaseModel, Field
|
||||||
|
from typing import Dict
|
||||||
|
|
||||||
|
|
||||||
|
class ParameterDefinition(BaseModel):
|
||||||
|
description: str = Field(..., title="Description of the parameter")
|
||||||
|
type: str = Field(..., title="Type of the parameter")
|
||||||
|
required: bool = Field(..., title="Is the parameter required?")
|
||||||
|
|
||||||
|
|
||||||
|
class CohereFuncSchema(BaseModel):
|
||||||
|
name: str = Field(..., title="Name of the tool")
|
||||||
|
description: str = Field(..., title="Description of the tool")
|
||||||
|
parameter_definitions: Dict[str, ParameterDefinition] = Field(
|
||||||
|
..., title="Parameter definitions for the tool"
|
||||||
|
)
|
@ -0,0 +1,101 @@
|
|||||||
|
import json
|
||||||
|
from typing import List, Union, Dict
|
||||||
|
|
||||||
|
from pydantic import BaseModel
|
||||||
|
|
||||||
|
from swarms.tools.pydantic_to_json import (
|
||||||
|
base_model_to_openai_function,
|
||||||
|
multi_base_model_to_openai_function,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def json_str_to_json(json_str: str) -> dict:
|
||||||
|
"""Convert a JSON string to a JSON object"""
|
||||||
|
return json.loads(json_str)
|
||||||
|
|
||||||
|
|
||||||
|
def json_str_to_pydantic_model(
|
||||||
|
json_str: str, model: BaseModel
|
||||||
|
) -> BaseModel:
|
||||||
|
"""Convert a JSON string to a Pydantic model"""
|
||||||
|
return model.model_validate_json(json_str)
|
||||||
|
|
||||||
|
|
||||||
|
def json_str_to_dict(json_str: str) -> dict:
|
||||||
|
"""Convert a JSON string to a dictionary"""
|
||||||
|
return json.loads(json_str)
|
||||||
|
|
||||||
|
|
||||||
|
def pydantic_model_to_json_str(
|
||||||
|
model: BaseModel, indent: int, *args, **kwargs
|
||||||
|
) -> str:
|
||||||
|
return json.dumps(
|
||||||
|
base_model_to_openai_function(model),
|
||||||
|
indent=indent,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
def dict_to_json_str(dictionary: dict) -> str:
|
||||||
|
"""Convert a dictionary to a JSON string"""
|
||||||
|
return json.dumps(dictionary)
|
||||||
|
|
||||||
|
|
||||||
|
def dict_to_pydantic_model(
|
||||||
|
dictionary: dict, model: BaseModel
|
||||||
|
) -> BaseModel:
|
||||||
|
"""Convert a dictionary to a Pydantic model"""
|
||||||
|
return model.model_validate_json(dictionary)
|
||||||
|
|
||||||
|
|
||||||
|
# def prep_pydantic_model_for_str(model: BaseModel):
|
||||||
|
# # Convert to Function
|
||||||
|
# out = pydantic_model_to_json_str(model)
|
||||||
|
|
||||||
|
# # return function_to_str(out)
|
||||||
|
|
||||||
|
|
||||||
|
def tool_schema_to_str(
|
||||||
|
tool_schema: BaseModel = None, *args, **kwargs
|
||||||
|
) -> str:
|
||||||
|
"""Convert a tool schema to a string"""
|
||||||
|
out = base_model_to_openai_function(tool_schema)
|
||||||
|
return str(out)
|
||||||
|
|
||||||
|
|
||||||
|
def tool_schemas_to_str(
|
||||||
|
tool_schemas: List[BaseModel] = None, *args, **kwargs
|
||||||
|
) -> str:
|
||||||
|
"""Convert a list of tool schemas to a string"""
|
||||||
|
out = multi_base_model_to_openai_function(tool_schemas)
|
||||||
|
return str(out)
|
||||||
|
|
||||||
|
|
||||||
|
def str_to_pydantic_model(string: str, model: BaseModel) -> BaseModel:
|
||||||
|
"""Convert a string to a Pydantic model"""
|
||||||
|
return model.model_validate_json(string)
|
||||||
|
|
||||||
|
|
||||||
|
def list_str_to_pydantic_model(
|
||||||
|
list_str: List[str], model: BaseModel
|
||||||
|
) -> BaseModel:
|
||||||
|
"""Convert a list of strings to a Pydantic model"""
|
||||||
|
# return model.model_validate_json(list_str)
|
||||||
|
for string in list_str:
|
||||||
|
return model.model_validate_json(string)
|
||||||
|
|
||||||
|
|
||||||
|
def prepare_output_for_output_model(
|
||||||
|
output_type: Union[str, Dict, BaseModel],
|
||||||
|
output: Union[str, Dict, BaseModel] = None,
|
||||||
|
) -> Union[BaseModel, str]:
|
||||||
|
"""Prepare the output for the output model"""
|
||||||
|
if output_type == BaseModel:
|
||||||
|
return str_to_pydantic_model(output, output_type)
|
||||||
|
elif output_type == dict:
|
||||||
|
return dict_to_json_str(output)
|
||||||
|
elif output_type == str:
|
||||||
|
return output
|
||||||
|
else:
|
||||||
|
return output
|
Loading…
Reference in new issue