pull/478/head
Kye Gomez 8 months ago
parent 3f1d078dd9
commit 2cf86acd6d

@ -0,0 +1,111 @@
import os
from dotenv import load_dotenv
from playground.demos.plant_biologist_swarm.prompts import (
diagnoser_agent,
disease_detector_agent,
growth_predictor_agent,
harvester_agent,
treatment_recommender_agent,
)
from swarms import Agent, GPT4VisionAPI, ConcurrentWorkflow
# Load the OpenAI API key from the .env file
load_dotenv()
# Initialize the OpenAI API key
api_key = os.environ.get("OPENAI_API_KEY")
# llm = llm,
llm = GPT4VisionAPI(
max_tokens=4000,
)
# Initialize Diagnoser Agent
diagnoser_agent = Agent(
agent_name="Diagnoser Agent",
system_prompt=diagnoser_agent(),
llm=llm,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
# saved_state_path="diagnoser.json",
multi_modal=True,
autosave=True,
)
# Initialize Harvester Agent
harvester_agent = Agent(
agent_name="Harvester Agent",
system_prompt=harvester_agent(),
llm=llm,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
# saved_state_path="harvester.json",
multi_modal=True,
autosave=True,
)
# Initialize Growth Predictor Agent
growth_predictor_agent = Agent(
agent_name="Growth Predictor Agent",
system_prompt=growth_predictor_agent(),
llm=llm,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
# saved_state_path="growth_predictor.json",
multi_modal=True,
autosave=True,
)
# Initialize Treatment Recommender Agent
treatment_recommender_agent = Agent(
agent_name="Treatment Recommender Agent",
system_prompt=treatment_recommender_agent(),
llm=llm,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
# saved_state_path="treatment_recommender.json",
multi_modal=True,
autosave=True,
)
# Initialize Disease Detector Agent
disease_detector_agent = Agent(
agent_name="Disease Detector Agent",
system_prompt=disease_detector_agent(),
llm=llm,
max_loops=1,
dashboard=False,
streaming_on=True,
verbose=True,
# saved_state_path="disease_detector.json",
multi_modal=True,
autosave=True,
)
agents = [
diagnoser_agent,
disease_detector_agent,
treatment_recommender_agent,
growth_predictor_agent,
harvester_agent,
]
# Create the Concurrent workflow
workflow = ConcurrentWorkflow(
agents=agents,
max_loops=1,
)
workflow.run("Diagnose the plant disease.")

@ -89,6 +89,8 @@ class ConcurrentWorkflow(BaseWorkflow):
""" """
loop = 0 loop = 0
while loop < self.max_loops: while loop < self.max_loops:
if self.tasks is not None:
with concurrent.futures.ThreadPoolExecutor( with concurrent.futures.ThreadPoolExecutor(
max_workers=self.max_workers max_workers=self.max_workers
) as executor: ) as executor:
@ -117,6 +119,39 @@ class ConcurrentWorkflow(BaseWorkflow):
): ):
break break
elif self.agents is not None:
with concurrent.futures.ThreadPoolExecutor(
max_workers=self.max_workers
) as executor:
futures = {
executor.submit(agent.run): agent
for agent in self.agents
}
results = []
for future in concurrent.futures.as_completed(futures):
agent = futures[future]
try:
result = future.result()
if self.print_results:
logger.info(f"Agent {agent}: {result}")
if self.return_results:
results.append(result)
except Exception as e:
logger.error(
f"Agent {agent} generated an exception: {e}"
)
loop += 1
if self.stopping_condition and self.stopping_condition(
results
):
break
else:
logger.warning("No tasks or agents found in the workflow.")
break
return results if self.return_results else None return results if self.return_results else None
def list_tasks(self): def list_tasks(self):

Loading…
Cancel
Save