[DOCS][Swarms Memory]

pull/529/head
Kye Gomez 7 months ago
parent b8f31279ff
commit 2d43838c3b

@ -167,6 +167,14 @@ nav:
- Getting Started with SOTA Vision Language Models VLM: "swarms_cloud/getting_started.md"
- Enterprise Guide to High-Performance Multi-Agent LLM Deployments: "swarms_cloud/production_deployment.md"
- Under The Hood The Swarm Cloud Serving Infrastructure: "swarms_cloud/architecture.md"
- Swarms Memory:
- Overview: "swarms_memory/memory/index.md"
- Memory Systems:
- ChromaDB: "swarms_memory/memory/chromadb.md"
- Pinecone: "swarms_memory/memory/pinecone.md"
- Redis: "swarms_memory/memory/redis.md"
- Faiss: "swarms_memory/memory/faiss.md"
- HNSW: "swarms_memory/memory/hnsw.md"
- References:
- Agent Glossary: "swarms/glossary.md"
- List of The Best Multi-Agent Papers: "swarms/papers.md"

@ -0,0 +1,141 @@
# ChromaDB Documentation
ChromaDB is a specialized module designed to facilitate the storage and retrieval of documents using the ChromaDB system. It offers functionalities for adding documents to a local ChromaDB collection and querying this collection based on provided query texts. This module integrates with the ChromaDB client to create and manage collections, leveraging various configurations for optimizing the storage and retrieval processes.
#### Parameters
| Parameter | Type | Default | Description |
|----------------|-------------------|----------|-------------------------------------------------------------|
| `metric` | `str` | `"cosine"`| The similarity metric to use for the collection. |
| `output_dir` | `str` | `"swarms"`| The name of the collection to store the results in. |
| `limit_tokens` | `Optional[int]` | `1000` | The maximum number of tokens to use for the query. |
| `n_results` | `int` | `1` | The number of results to retrieve. |
| `docs_folder` | `Optional[str]` | `None` | The folder containing documents to be added to the collection.|
| `verbose` | `bool` | `False` | Flag to enable verbose logging for debugging. |
| `*args` | `tuple` | `()` | Additional positional arguments. |
| `**kwargs` | `dict` | `{}` | Additional keyword arguments. |
#### Methods
| Method | Description |
|-----------------------|----------------------------------------------------------|
| `__init__` | Initializes the ChromaDB instance with specified parameters. |
| `add` | Adds a document to the ChromaDB collection. |
| `query` | Queries documents from the ChromaDB collection based on the query text. |
| `traverse_directory` | Traverses the specified directory to add documents to the collection. |
## Usage
```python
from swarms_memory import ChromaDB
chromadb = ChromaDB(
metric="cosine",
output_dir="results",
limit_tokens=1000,
n_results=2,
docs_folder="path/to/docs",
verbose=True,
)
```
### Adding Documents
The `add` method allows you to add a document to the ChromaDB collection. It generates a unique ID for each document and adds it to the collection.
#### Parameters
| Parameter | Type | Default | Description |
|---------------|--------|---------|---------------------------------------------|
| `document` | `str` | - | The document to be added to the collection. |
| `*args` | `tuple`| `()` | Additional positional arguments. |
| `**kwargs` | `dict` | `{}` | Additional keyword arguments. |
#### Returns
| Type | Description |
|-------|--------------------------------------|
| `str` | The ID of the added document. |
#### Example
```python
task = "example_task"
result = "example_result"
result_id = chromadb.add(document="This is a sample document.")
print(f"Document ID: {result_id}")
```
### Querying Documents
The `query` method allows you to retrieve documents from the ChromaDB collection based on the provided query text.
#### Parameters
| Parameter | Type | Default | Description |
|-------------|--------|---------|----------------------------------------|
| `query_text`| `str` | - | The query string to search for. |
| `*args` | `tuple`| `()` | Additional positional arguments. |
| `**kwargs` | `dict` | `{}` | Additional keyword arguments. |
#### Returns
| Type | Description |
|-------|--------------------------------------|
| `str` | The retrieved documents as a string. |
#### Example
```python
query_text = "search term"
results = chromadb.query(query_text=query_text)
print(f"Retrieved Documents: {results}")
```
### Traversing Directory
The `traverse_directory` method traverses through every file in the specified directory and its subdirectories, adding the contents of each file to the ChromaDB collection.
#### Example
```python
chromadb.traverse_directory()
```
## Additional Information and Tips
### Verbose Logging
Enable the `verbose` flag during initialization to get detailed logs of the operations, which is useful for debugging.
```python
chromadb = ChromaDB(verbose=True)
```
### Handling Large Documents
When dealing with large documents, consider using the `limit_tokens` parameter to restrict the number of tokens processed in a single query.
```python
chromadb = ChromaDB(limit_tokens=500)
```
### Optimizing Query Performance
Use the appropriate similarity metric (`metric` parameter) that suits your use case for optimal query performance.
```python
chromadb = ChromaDB(metric="euclidean")
```
## References and Resources
- [ChromaDB Documentation](https://chromadb.io/docs)
- [Python UUID Module](https://docs.python.org/3/library/uuid.html)
- [Python os Module](https://docs.python.org/3/library/os.html)
- [Python logging Module](https://docs.python.org/3/library/logging.html)
- [dotenv Package](https://pypi.org/project/python-dotenv/)
By following this documentation, users can effectively utilize the ChromaDB module for managing document storage and retrieval in their applications.

@ -0,0 +1,179 @@
# PineconeMemory Documentation
The `PineconeMemory` class provides a robust interface for integrating Pinecone-based Retrieval-Augmented Generation (RAG) systems. It allows for adding documents to a Pinecone index and querying the index for similar documents. The class supports custom embedding models, preprocessing functions, and other customizations to suit different use cases.
#### Parameters
| Parameter | Type | Default | Description |
|----------------------|-----------------------------------------------|-----------------------------------|------------------------------------------------------------------------------------------------------|
| `api_key` | `str` | - | Pinecone API key. |
| `environment` | `str` | - | Pinecone environment. |
| `index_name` | `str` | - | Name of the Pinecone index to use. |
| `dimension` | `int` | `768` | Dimension of the document embeddings. |
| `embedding_model` | `Optional[Any]` | `None` | Custom embedding model. Defaults to `SentenceTransformer('all-MiniLM-L6-v2')`. |
| `embedding_function` | `Optional[Callable[[str], List[float]]]` | `None` | Custom embedding function. Defaults to `_default_embedding_function`. |
| `preprocess_function`| `Optional[Callable[[str], str]]` | `None` | Custom preprocessing function. Defaults to `_default_preprocess_function`. |
| `postprocess_function`| `Optional[Callable[[List[Dict[str, Any]]], List[Dict[str, Any]]]]`| `None` | Custom postprocessing function. Defaults to `_default_postprocess_function`. |
| `metric` | `str` | `'cosine'` | Distance metric for Pinecone index. |
| `pod_type` | `str` | `'p1'` | Pinecone pod type. |
| `namespace` | `str` | `''` | Pinecone namespace. |
| `logger_config` | `Optional[Dict[str, Any]]` | `None` | Configuration for the logger. Defaults to logging to `rag_wrapper.log` and console output. |
### Methods
#### `_setup_logger`
```python
def _setup_logger(self, config: Optional[Dict[str, Any]] = None)
```
Sets up the logger with the given configuration.
#### `_default_embedding_function`
```python
def _default_embedding_function(self, text: str) -> List[float]
```
Generates embeddings using the default SentenceTransformer model.
#### `_default_preprocess_function`
```python
def _default_preprocess_function(self, text: str) -> str
```
Preprocesses the input text by stripping whitespace.
#### `_default_postprocess_function`
```python
def _default_postprocess_function(self, results: List[Dict[str, Any]]) -> List[Dict[str, Any]]
```
Postprocesses the query results.
#### `add`
Adds a document to the Pinecone index.
| Parameter | Type | Default | Description |
|-----------|-----------------------|---------|-----------------------------------------------|
| `doc` | `str` | - | The document to be added. |
| `metadata`| `Optional[Dict[str, Any]]` | `None` | Additional metadata for the document. |
#### `query`
Queries the Pinecone index for similar documents.
| Parameter | Type | Default | Description |
|-----------|-------------------------|---------|-----------------------------------------------|
| `query` | `str` | - | The query string. |
| `top_k` | `int` | `5` | The number of top results to return. |
| `filter` | `Optional[Dict[str, Any]]` | `None` | Metadata filter for the query. |
## Usage
The `PineconeMemory` class is initialized with the necessary parameters to configure Pinecone and the embedding model. It supports a variety of custom configurations to suit different needs.
#### Example
```python
from swarms_memory import PineconeMemory
# Initialize PineconeMemory
memory = PineconeMemory(
api_key="your-api-key",
environment="us-west1-gcp",
index_name="example-index",
dimension=768
)
```
### Adding Documents
Documents can be added to the Pinecone index using the `add` method. The method accepts a document string and optional metadata.
#### Example
```python
doc = "This is a sample document to be added to the Pinecone index."
metadata = {"author": "John Doe", "date": "2024-07-08"}
memory.add(doc, metadata)
```
### Querying Documents
The `query` method allows for querying the Pinecone index for similar documents based on a query string. It returns the top `k` most similar documents.
#### Example
```python
query = "Sample query to find similar documents."
results = memory.query(query, top_k=5)
for result in results:
print(result)
```
## Additional Information and Tips
### Custom Embedding and Preprocessing Functions
Custom embedding and preprocessing functions can be provided during initialization to tailor the document processing to specific requirements.
#### Example
```python
def custom_embedding_function(text: str) -> List[float]:
# Custom embedding logic
return [0.1, 0.2, 0.3]
def custom_preprocess_function(text: str) -> str:
# Custom preprocessing logic
return text.lower()
memory = PineconeMemory(
api_key="your-api-key",
environment="us-west1-gcp",
index_name="example-index",
embedding_function=custom_embedding_function,
preprocess_function=custom_preprocess_function
)
```
### Logger Configuration
The logger can be configured to suit different logging needs. The default configuration logs to a file and the console.
#### Example
```python
logger_config = {
"handlers": [
{"sink": "custom_log.log", "rotation": "1 MB"},
{"sink": lambda msg: print(msg, end="")},
]
}
memory = PineconeMemory(
api_key="your-api-key",
environment="us-west1-gcp",
index_name="example-index",
logger_config=logger_config
)
```
## References and Resources
- [Pinecone Documentation](https://docs.pinecone.io/)
- [SentenceTransformers Documentation](https://www.sbert.net/)
- [Loguru Documentation](https://loguru.readthedocs.io/en/stable/)
For further exploration and examples, refer to the official documentation and resources provided by Pinecone, SentenceTransformers, and Loguru.
This concludes the detailed documentation for the `PineconeMemory` class. The class offers a flexible and powerful interface for leveraging Pinecone's capabilities in retrieval-augmented generation systems. By supporting custom embeddings, preprocessing, and postprocessing functions, it can be tailored to a wide range of applications.
Loading…
Cancel
Save