[README][CLEANUP]

668
Your Name 1 month ago
parent 3ab65bf559
commit 2f412dcdc0

@ -81,9 +81,10 @@ Refer to our documentation for production grade implementation details.
## Install 💻 ## Install 💻
Install the following packages with copy and paste
```bash ```bash
$ pip3 install -U swarms $ pip3 install -U swarms swarm-models swarms-memory
``` ```
@ -168,28 +169,15 @@ The `Agent` class offers a range of settings to tailor its behavior to specific
```python ```python
import os import os
from swarms import Agent from swarms import Agent
from swarm_models import OpenAIChat
from swarms.prompts.finance_agent_sys_prompt import ( from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT, FINANCIAL_AGENT_SYS_PROMPT,
) )
from dotenv import load_dotenv
load_dotenv()
# Get the OpenAI API key from the environment variable
api_key = os.getenv("OPENAI_API_KEY")
# Create an instance of the OpenAIChat class
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize the agent # Initialize the agent
agent = Agent( agent = Agent(
agent_name="Financial-Analysis-Agent", agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT, system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o-mini",
max_loops=1, max_loops=1,
autosave=True, autosave=True,
dashboard=False, dashboard=False,
@ -211,11 +199,10 @@ agent.run(
``` ```
----- -----
### Integrating RAG with Swarms for Enhanced Long-Term Memory ### Integrating RAG with Swarms for Enhanced Long-Term Memory
`Agent` equipped with quasi-infinite long term memory using RAG (Relational Agent Graph) for advanced document understanding, analysis, and retrieval capabilities. `Agent` equipped with quasi-infinite long term memory using RAG (Relational Agent Graph) for advanced document understanding, analysis, and retrieval capabilities.
**Mermaid Diagram for RAG Integration** **Mermaid Diagram for RAG Integration**
```mermaid ```mermaid
graph TD graph TD
@ -227,8 +214,11 @@ graph TD
F --> G[Return Output] F --> G[Return Output]
``` ```
**Step 1: Initialize the ChromaDB Client**
```python ```python
from swarms import Agent
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
import os import os
from swarms_memory import ChromaDB from swarms_memory import ChromaDB
@ -239,29 +229,13 @@ chromadb = ChromaDB(
output_dir="finance_agent_rag", # Directory for storing RAG data output_dir="finance_agent_rag", # Directory for storing RAG data
# docs_folder="artifacts", # Uncomment and specify the folder containing your documents # docs_folder="artifacts", # Uncomment and specify the folder containing your documents
) )
```
**Step 2: Define the Model**
```python
from swarm_models import Anthropic
from swarms.prompts.finance_agent_sys_prompt import (
FINANCIAL_AGENT_SYS_PROMPT,
)
# Define the Anthropic model for language processing
model = Anthropic(anthropic_api_key=os.getenv("ANTHROPIC_API_KEY"))
```
**Step 3: Initialize the Agent with RAG**
```python
from swarms import Agent
# Initialize the agent with RAG capabilities # Initialize the agent with RAG capabilities
agent = Agent( agent = Agent(
agent_name="Financial-Analysis-Agent", agent_name="Financial-Analysis-Agent",
system_prompt=FINANCIAL_AGENT_SYS_PROMPT, system_prompt=FINANCIAL_AGENT_SYS_PROMPT,
agent_description="Agent creates a comprehensive financial analysis", agent_description="Agent creates a comprehensive financial analysis",
llm=model, model_name="gpt-4o-mini",
max_loops="auto", # Auto-adjusts loops based on task complexity max_loops="auto", # Auto-adjusts loops based on task complexity
autosave=True, # Automatically saves agent state autosave=True, # Automatically saves agent state
dashboard=False, # Disables dashboard for this example dashboard=False, # Disables dashboard for this example
@ -378,7 +352,6 @@ The following is an example of an agent that intakes a pydantic basemodel and ou
```python ```python
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from swarms import Agent from swarms import Agent
from swarm_models import Anthropic
# Initialize the schema for the person's information # Initialize the schema for the person's information
@ -410,7 +383,7 @@ agent = Agent(
), ),
# Set the tool schema to the JSON string -- this is the key difference # Set the tool schema to the JSON string -- this is the key difference
tool_schema=tool_schema, tool_schema=tool_schema,
llm=Anthropic(), model_name="gpt-4o",
max_loops=3, max_loops=3,
autosave=True, autosave=True,
dashboard=False, dashboard=False,
@ -617,8 +590,6 @@ You can now easily plug this custom Griptape agent into the **Swarms Framework**
## Understanding Swarms ## Understanding Swarms
### What is a Swarm?
A swarm refers to a group of more than two agents working collaboratively to achieve a common goal. These agents can be software entities, such as llms that interact with each other to perform complex tasks. The concept of a swarm is inspired by natural systems like ant colonies or bird flocks, where simple individual behaviors lead to complex group dynamics and problem-solving capabilities. A swarm refers to a group of more than two agents working collaboratively to achieve a common goal. These agents can be software entities, such as llms that interact with each other to perform complex tasks. The concept of a swarm is inspired by natural systems like ant colonies or bird flocks, where simple individual behaviors lead to complex group dynamics and problem-solving capabilities.
### How Swarm Architectures Facilitate Communication ### How Swarm Architectures Facilitate Communication
@ -631,9 +602,6 @@ Swarm architectures are designed to establish and manage communication between a
3. **Sequential Communication**: Sequential swarms process tasks in a linear order, where each agent's output becomes the input for the next agent. This ensures that tasks with dependencies are handled in the correct sequence, maintaining the integrity of the workflow. 3. **Sequential Communication**: Sequential swarms process tasks in a linear order, where each agent's output becomes the input for the next agent. This ensures that tasks with dependencies are handled in the correct sequence, maintaining the integrity of the workflow.
4. **Mesh Communication**: In mesh swarms, agents are fully connected, allowing any agent to communicate with any other agent. This setup provides high flexibility and redundancy, making it ideal for complex systems requiring dynamic interactions.
5. **Federated Communication**: Federated swarms involve multiple independent swarms that collaborate by sharing information and results. Each swarm operates autonomously but can contribute to a larger task, enabling distributed problem-solving across different nodes.
Swarm architectures leverage these communication patterns to ensure that agents work together efficiently, adapting to the specific requirements of the task at hand. By defining clear communication protocols and interaction models, swarm architectures enable the seamless orchestration of multiple agents, leading to enhanced performance and problem-solving capabilities. Swarm architectures leverage these communication patterns to ensure that agents work together efficiently, adapting to the specific requirements of the task at hand. By defining clear communication protocols and interaction models, swarm architectures enable the seamless orchestration of multiple agents, leading to enhanced performance and problem-solving capabilities.
@ -911,14 +879,12 @@ The `run` method returns the final output after all agents have processed the in
from swarms import Agent, AgentRearrange from swarms import Agent, AgentRearrange
from swarm_models import Anthropic
# Initialize the director agent # Initialize the director agent
director = Agent( director = Agent(
agent_name="Director", agent_name="Director",
system_prompt="Directs the tasks for the workers", system_prompt="Directs the tasks for the workers",
llm=Anthropic(), model_name="claude-2",
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -934,7 +900,7 @@ director = Agent(
worker1 = Agent( worker1 = Agent(
agent_name="Worker1", agent_name="Worker1",
system_prompt="Generates a transcript for a youtube video on what swarms are", system_prompt="Generates a transcript for a youtube video on what swarms are",
llm=Anthropic(), model_name="claude-2",
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -949,7 +915,7 @@ worker1 = Agent(
worker2 = Agent( worker2 = Agent(
agent_name="Worker2", agent_name="Worker2",
system_prompt="Summarizes the transcript generated by Worker1", system_prompt="Summarizes the transcript generated by Worker1",
llm=Anthropic(), model_name="claude-2",
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -1103,20 +1069,12 @@ The `run` method returns the final output after all agents have processed the in
```python ```python
import os import os
from swarm_models import OpenAIChat
from swarms import Agent, MixtureOfAgents from swarms import Agent, MixtureOfAgents
api_key = os.getenv("OPENAI_API_KEY")
# Create individual agents with the OpenAIChat model
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4", temperature=0.1
)
# Agent 1: Financial Statement Analyzer # Agent 1: Financial Statement Analyzer
agent1 = Agent( agent1 = Agent(
agent_name="FinancialStatementAnalyzer", agent_name="FinancialStatementAnalyzer",
llm=model, model_name="gpt-4o",
system_prompt="""You are a Financial Statement Analyzer specializing in 10-K SEC reports. Your primary focus is on analyzing the financial statements, including the balance sheet, income statement, and cash flow statement. system_prompt="""You are a Financial Statement Analyzer specializing in 10-K SEC reports. Your primary focus is on analyzing the financial statements, including the balance sheet, income statement, and cash flow statement.
Key responsibilities: Key responsibilities:
@ -1142,7 +1100,7 @@ When analyzing, consider industry standards and compare the company's performanc
# Agent 2: Risk Assessment Specialist # Agent 2: Risk Assessment Specialist
agent2 = Agent( agent2 = Agent(
agent_name="RiskAssessmentSpecialist", agent_name="RiskAssessmentSpecialist",
llm=model, model_name="gpt-4o",
system_prompt="""You are a Risk Assessment Specialist focusing on 10-K SEC reports. Your primary role is to identify, analyze, and evaluate potential risks disclosed in the report. system_prompt="""You are a Risk Assessment Specialist focusing on 10-K SEC reports. Your primary role is to identify, analyze, and evaluate potential risks disclosed in the report.
Key responsibilities: Key responsibilities:
@ -1169,7 +1127,7 @@ Your analysis should provide a comprehensive overview of the company's risk land
# Agent 3: Business Strategy Evaluator # Agent 3: Business Strategy Evaluator
agent3 = Agent( agent3 = Agent(
agent_name="BusinessStrategyEvaluator", agent_name="BusinessStrategyEvaluator",
llm=model, model_name="gpt-4o",
system_prompt="""You are a Business Strategy Evaluator specializing in analyzing 10-K SEC reports. Your focus is on assessing the company's overall strategy, market position, and future outlook. system_prompt="""You are a Business Strategy Evaluator specializing in analyzing 10-K SEC reports. Your focus is on assessing the company's overall strategy, market position, and future outlook.
Key responsibilities: Key responsibilities:
@ -1197,7 +1155,7 @@ Your analysis should provide insights into the company's strategic direction, it
# Aggregator Agent # Aggregator Agent
aggregator_agent = Agent( aggregator_agent = Agent(
agent_name="10KReportAggregator", agent_name="10KReportAggregator",
llm=model, model_name="gpt-4o",
system_prompt="""You are the 10-K Report Aggregator, responsible for synthesizing and summarizing the analyses provided by the Financial Statement Analyzer, Risk Assessment Specialist, and Business Strategy Evaluator. Your goal is to create a comprehensive, coherent, and insightful summary of the 10-K SEC report. system_prompt="""You are the 10-K Report Aggregator, responsible for synthesizing and summarizing the analyses provided by the Financial Statement Analyzer, Risk Assessment Specialist, and Business Strategy Evaluator. Your goal is to create a comprehensive, coherent, and insightful summary of the 10-K SEC report.
Key responsibilities: Key responsibilities:
@ -1287,9 +1245,8 @@ The `run` method returns a dictionary containing the outputs of each agent that
```python ```python
import os import os
from swarms import Agent from swarms import Agent, SpreadSheetSwarm
from swarm_models import OpenAIChat from swarm_models import OpenAIChat
from swarms.structs.spreadsheet_swarm import SpreadSheetSwarm
# Define custom system prompts for each social media platform # Define custom system prompts for each social media platform
TWITTER_AGENT_SYS_PROMPT = """ TWITTER_AGENT_SYS_PROMPT = """
@ -1312,20 +1269,12 @@ EMAIL_AGENT_SYS_PROMPT = """
You are an Email marketing expert specializing in real estate. Your task is to write compelling email campaigns to promote properties, focusing on personalization, subject lines, and effective call-to-action strategies to drive conversions. You are an Email marketing expert specializing in real estate. Your task is to write compelling email campaigns to promote properties, focusing on personalization, subject lines, and effective call-to-action strategies to drive conversions.
""" """
# Example usage:
api_key = os.getenv("OPENAI_API_KEY")
# Model
model = OpenAIChat(
openai_api_key=api_key, model_name="gpt-4o-mini", temperature=0.1
)
# Initialize your agents for different social media platforms # Initialize your agents for different social media platforms
agents = [ agents = [
Agent( Agent(
agent_name="Twitter-RealEstate-Agent", agent_name="Twitter-RealEstate-Agent",
system_prompt=TWITTER_AGENT_SYS_PROMPT, system_prompt=TWITTER_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="twitter_realestate_agent.json", saved_state_path="twitter_realestate_agent.json",
@ -1335,7 +1284,7 @@ agents = [
Agent( Agent(
agent_name="Instagram-RealEstate-Agent", agent_name="Instagram-RealEstate-Agent",
system_prompt=INSTAGRAM_AGENT_SYS_PROMPT, system_prompt=INSTAGRAM_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="instagram_realestate_agent.json", saved_state_path="instagram_realestate_agent.json",
@ -1345,7 +1294,7 @@ agents = [
Agent( Agent(
agent_name="Facebook-RealEstate-Agent", agent_name="Facebook-RealEstate-Agent",
system_prompt=FACEBOOK_AGENT_SYS_PROMPT, system_prompt=FACEBOOK_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="facebook_realestate_agent.json", saved_state_path="facebook_realestate_agent.json",
@ -1355,7 +1304,7 @@ agents = [
Agent( Agent(
agent_name="LinkedIn-RealEstate-Agent", agent_name="LinkedIn-RealEstate-Agent",
system_prompt=LINKEDIN_AGENT_SYS_PROMPT, system_prompt=LINKEDIN_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="linkedin_realestate_agent.json", saved_state_path="linkedin_realestate_agent.json",
@ -1365,7 +1314,7 @@ agents = [
Agent( Agent(
agent_name="Email-RealEstate-Agent", agent_name="Email-RealEstate-Agent",
system_prompt=EMAIL_AGENT_SYS_PROMPT, system_prompt=EMAIL_AGENT_SYS_PROMPT,
llm=model, model_name="gpt-4o",
max_loops=1, max_loops=1,
dynamic_temperature_enabled=True, dynamic_temperature_enabled=True,
saved_state_path="email_realestate_agent.json", saved_state_path="email_realestate_agent.json",
@ -1474,7 +1423,7 @@ The `run` method returns the output from the most relevant agent selected based
```python ```python
from swarms.structs.tree_swarm import TreeAgent, Tree, ForestSwarm from swarms import TreeAgent, Tree, ForestSwarm
# Create agents with varying system prompts and dynamically generated distances/keywords # Create agents with varying system prompts and dynamically generated distances/keywords
agents_tree1 = [ agents_tree1 = [

@ -7,11 +7,12 @@ logger.add(
"api_tests_{time}.log", "api_tests_{time}.log",
rotation="100 MB", rotation="100 MB",
level="DEBUG", level="DEBUG",
format="{time} {level} {message}" format="{time} {level} {message}",
) )
BASE_URL = "http://localhost:8000/v1" BASE_URL = "http://localhost:8000/v1"
def test_create_agent(): def test_create_agent():
"""Test creating a new agent.""" """Test creating a new agent."""
logger.info("Testing agent creation") logger.info("Testing agent creation")
@ -21,7 +22,7 @@ def test_create_agent():
"system_prompt": "You are a helpful assistant", "system_prompt": "You are a helpful assistant",
"model_name": "gpt-4", "model_name": "gpt-4",
"description": "Test agent", "description": "Test agent",
"tags": ["test"] "tags": ["test"],
} }
response = requests.post(f"{BASE_URL}/agent", json=payload) response = requests.post(f"{BASE_URL}/agent", json=payload)
@ -34,6 +35,7 @@ def test_create_agent():
logger.error(f"Failed to create agent: {response.text}") logger.error(f"Failed to create agent: {response.text}")
return None return None
def test_list_agents(): def test_list_agents():
"""Test listing all agents.""" """Test listing all agents."""
logger.info("Testing agent listing") logger.info("Testing agent listing")
@ -46,16 +48,19 @@ def test_list_agents():
else: else:
logger.error(f"Failed to list agents: {response.text}") logger.error(f"Failed to list agents: {response.text}")
def test_completion(agent_id): def test_completion(agent_id):
"""Test running a completion.""" """Test running a completion."""
logger.info("Testing completion") logger.info("Testing completion")
payload = { payload = {
"prompt": "What is the weather like today?", "prompt": "What is the weather like today?",
"agent_id": agent_id "agent_id": agent_id,
} }
response = requests.post(f"{BASE_URL}/agent/completions", json=payload) response = requests.post(
f"{BASE_URL}/agent/completions", json=payload
)
logger.debug(f"Completion response: {response.json()}") logger.debug(f"Completion response: {response.json()}")
if response.status_code == 200: if response.status_code == 200:
@ -63,6 +68,7 @@ def test_completion(agent_id):
else: else:
logger.error(f"Failed to get completion: {response.text}") logger.error(f"Failed to get completion: {response.text}")
def test_delete_agent(agent_id): def test_delete_agent(agent_id):
"""Test deleting an agent.""" """Test deleting an agent."""
logger.info("Testing agent deletion") logger.info("Testing agent deletion")
@ -75,6 +81,7 @@ def test_delete_agent(agent_id):
else: else:
logger.error(f"Failed to delete agent: {response.text}") logger.error(f"Failed to delete agent: {response.text}")
def run_tests(): def run_tests():
"""Run all tests in sequence.""" """Run all tests in sequence."""
logger.info("Starting API tests") logger.info("Starting API tests")
@ -95,5 +102,6 @@ def run_tests():
logger.info("Tests completed") logger.info("Tests completed")
if __name__ == "__main__": if __name__ == "__main__":
run_tests() run_tests()

@ -0,0 +1,188 @@
import json
import os
from contextlib import suppress
from typing import Any, Callable, Dict, Optional, Type, Union
from dotenv import load_dotenv
from pydantic import BaseModel, Field, ValidationError, create_model
from swarm_models.openai_function_caller import OpenAIFunctionCaller
class DynamicParser:
@staticmethod
def extract_fields(model: Type[BaseModel]) -> Dict[str, Any]:
return {
field_name: (field.annotation, ... if field.is_required() else None)
for field_name, field in model.model_fields.items()
}
@staticmethod
def create_partial_model(model: Type[BaseModel], data: Dict[str, Any]) -> Type[BaseModel]:
fields = {
field_name: (field.annotation, ... if field.is_required() else None)
for field_name, field in model.model_fields.items()
if field_name in data
}
return create_model(f"Partial{model.__name__}", **fields)
@classmethod
def parse(cls, data: Union[str, Dict[str, Any]], model: Type[BaseModel]) -> Optional[BaseModel]:
if isinstance(data, str):
try:
data = json.loads(data)
except json.JSONDecodeError:
return None
# Try full model first
with suppress(ValidationError):
return model.model_validate(data)
# Create and try partial model
partial_model = cls.create_partial_model(model, data)
with suppress(ValidationError):
return partial_model.model_validate(data)
return None
load_dotenv()
# Define the Thoughts schema
class Thoughts(BaseModel):
text: str = Field(..., description="Current thoughts or observations regarding the task.")
reasoning: str = Field(..., description="Logical reasoning behind the thought process.")
plan: str = Field(..., description="A short bulleted list that conveys the immediate and long-term plan.")
criticism: str = Field(..., description="Constructive self-criticism to improve future responses.")
speak: str = Field(..., description="A concise summary of thoughts intended for the user.")
# Define the Command schema
class Command(BaseModel):
name: str = Field(..., description="Command name to execute from the provided list of commands.")
args: Dict[str, Any] = Field(..., description="Arguments required to execute the command.")
# Define the AgentResponse schema
class AgentResponse(BaseModel):
thoughts: Thoughts = Field(..., description="The agent's current thoughts and reasoning.")
command: Command = Field(..., description="The command to execute along with its arguments.")
# Define tool functions
def fluid_api_command(task: str):
"""Execute a fluid API request."""
# response = fluid_api_request(task)
print(response.model_dump_json(indent=4))
return response
def send_tweet_command(text: str):
"""Simulate sending a tweet."""
print(f"Tweet sent: {text}")
return {"status": "success", "message": f"Tweet sent: {text}"}
def do_nothing_command():
"""Do nothing."""
print("Doing nothing...")
return {"status": "success", "message": "No action taken."}
def task_complete_command(reason: str):
"""Mark the task as complete and provide a reason."""
print(f"Task completed: {reason}")
return {"status": "success", "message": f"Task completed: {reason}"}
# Dynamic command execution
def execute_command(name: str, args: Dict[str, Any]):
"""Dynamically execute a command based on its name and arguments."""
command_map: Dict[str, Callable] = {
"fluid_api": lambda **kwargs: fluid_api_command(task=kwargs.get("task")),
"send_tweet": lambda **kwargs: send_tweet_command(text=kwargs.get("text")),
"do_nothing": lambda **kwargs: do_nothing_command(),
"task_complete": lambda **kwargs: task_complete_command(reason=kwargs.get("reason")),
}
if name not in command_map:
raise ValueError(f"Unknown command: {name}")
# Execute the command with the provided arguments
return command_map[name](**args)
def parse_and_execute_command(response: Union[str, Dict[str, Any]], base_model: Type[BaseModel] = AgentResponse) -> Any:
"""Enhanced command parser with flexible input handling"""
parsed = DynamicParser.parse(response, base_model)
if not parsed:
raise ValueError("Failed to parse response")
if hasattr(parsed, 'command'):
command_name = parsed.command.name
command_args = parsed.command.args
return execute_command(command_name, command_args)
return parsed
ainame = "AutoAgent"
userprovided = "assistant"
SYSTEM_PROMPT = f"""
You are {ainame}, an advanced and autonomous {userprovided}.
Your role is to make decisions and complete tasks independently without seeking user assistance. Leverage your strengths as an LLM to solve tasks efficiently, adhering strictly to the commands and resources provided.
### GOALS:
1. {userprovided}
2. Execute tasks with precision and efficiency.
3. Ensure outputs are actionable and aligned with the user's objectives.
4. Continuously optimize task strategies for maximum effectiveness.
5. Maintain reliability and consistency in all responses.
### CONSTRAINTS:
1. Memory limit: ~4000 words for short-term memory. Save essential information to files immediately to avoid loss.
2. Independent decision-making: Do not rely on user assistance.
3. Exclusively use commands in double quotes (e.g., "command name").
4. Use subprocesses for commands that may take longer than a few minutes.
5. Ensure all outputs strictly adhere to the specified JSON response format.
### COMMANDS:
1. Fluid API: "fluid_api", args: "method": "<GET/POST/...>", "url": "<url>", "headers": "<headers>", "body": "<payload>"
18. Send Tweet: "send_tweet", args: "text": "<text>"
19. Do Nothing: "do_nothing", args:
20. Task Complete (Shutdown): "task_complete", args: "reason": "<reason>"
### RESOURCES:
1. Internet access for real-time information and data gathering.
2. Long-term memory management for storing critical information.
3. Access to GPT-3.5-powered Agents for delegating tasks.
4. File handling capabilities for output storage and retrieval.
### PERFORMANCE EVALUATION:
1. Continuously analyze and reflect on actions to ensure optimal task completion.
2. Self-critique decisions and strategies constructively to identify areas for improvement.
3. Ensure every command serves a clear purpose and minimizes resource usage.
4. Complete tasks in the least number of steps, balancing speed and accuracy.
### RESPONSE FORMAT:
Always respond in a strict JSON format as described below. Ensure your responses can be parsed with Python's `json.loads`:
"""
# Initialize the OpenAIFunctionCaller
model = OpenAIFunctionCaller(
system_prompt=SYSTEM_PROMPT,
max_tokens=4000,
temperature=0.9,
base_model=AgentResponse, # Pass the Pydantic schema as the base model
parallel_tool_calls=False,
openai_api_key=os.getenv("OPENAI_API_KEY")
)
# Example usage
user_input = (
"Analyze the provided Python code for inefficiencies, generate suggestions for improvements, "
"and provide optimized code."
)
response = model.run(user_input)
response = parse_and_execute_command(response)
print(response)

@ -0,0 +1,898 @@
from enum import Enum
from typing import Union, Optional
import io
from PIL import Image
import numpy as np
import torch
import struct
from enum import auto
from typing import List, Dict, Tuple
import wave
from dataclasses import dataclass
import torch.nn as nn
import torch.nn.functional as F
from loguru import logger
from einops import rearrange
from torch import Tensor
@dataclass
class ModelConfig:
"""Configuration for the enhanced BytePredictor model."""
vocab_size: int = 256 # Standard byte range
hidden_size: int = 1024
num_layers: int = 12
num_key_value_heads: int = 8 # For multi-query attention
num_query_heads: int = 32 # More query heads than kv heads
dropout: float = 0.1
max_sequence_length: int = 8192
rope_theta: float = 10000.0
layer_norm_eps: float = 1e-5
vocab_parallel: bool = False
qk_norm: bool = True
qk_norm_scale: float = None
attention_bias: bool = False
class MultiQueryAttention(nn.Module):
"""Fixed Multi-Query Attention implementation."""
def __init__(self, config: ModelConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.num_query_heads = config.num_query_heads
self.num_key_value_heads = config.num_key_value_heads
self.head_dim = config.hidden_size // config.num_query_heads
self.qk_scale = config.qk_norm_scale or (self.head_dim**-0.5)
self.q_proj = nn.Linear(
config.hidden_size, config.num_query_heads * self.head_dim
)
self.k_proj = nn.Linear(
config.hidden_size,
config.num_key_value_heads * self.head_dim,
)
self.v_proj = nn.Linear(
config.hidden_size,
config.num_key_value_heads * self.head_dim,
)
self.o_proj = nn.Linear(
config.num_query_heads * self.head_dim, config.hidden_size
)
self.qk_norm = config.qk_norm
if self.qk_norm:
self.q_norm = nn.LayerNorm(self.head_dim)
self.k_norm = nn.LayerNorm(self.head_dim)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
batch_size, seq_length, _ = hidden_states.shape
# Project and reshape
q = self.q_proj(hidden_states)
k = self.k_proj(hidden_states)
v = self.v_proj(hidden_states)
# Reshape to [seq_len, batch, heads, head_dim]
q = q.view(
batch_size,
seq_length,
self.num_query_heads,
self.head_dim,
).permute(1, 0, 2, 3)
k = k.view(
batch_size,
seq_length,
self.num_key_value_heads,
self.head_dim,
).permute(1, 0, 2, 3)
v = v.view(
batch_size,
seq_length,
self.num_key_value_heads,
self.head_dim,
).permute(1, 0, 2, 3)
# Apply rotary embeddings
# q, k = self.rotary(q, k, seq_length)
# Apply QK normalization if enabled
if self.qk_norm:
q = self.q_norm(q)
k = self.k_norm(k)
# Handle MQA head expansion
if self.num_key_value_heads != self.num_query_heads:
k = k.repeat_interleave(
self.num_query_heads // self.num_key_value_heads,
dim=2,
)
v = v.repeat_interleave(
self.num_query_heads // self.num_key_value_heads,
dim=2,
)
# Compute attention
# Reshape for matmul: [batch, heads, seq_length, head_dim]
q = q.permute(1, 2, 0, 3)
k = k.permute(1, 2, 0, 3)
v = v.permute(1, 2, 0, 3)
attn_weights = (
torch.matmul(q, k.transpose(-2, -1)) * self.qk_scale
)
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = F.softmax(attn_weights, dim=-1)
output = torch.matmul(attn_weights, v)
# Reshape back to [batch, seq_length, hidden_size]
output = (
output.transpose(1, 2)
.contiguous()
.view(batch_size, seq_length, -1)
)
output = self.o_proj(output)
return output
class EnhancedBytePredictor(nn.Module):
"""Enhanced byte prediction model with state-of-the-art features."""
def __init__(self, config: ModelConfig):
super().__init__()
self.config = config
# Token embeddings
self.tok_embeddings = nn.Embedding(
config.vocab_size, config.hidden_size
)
# Transformer layers
self.layers = nn.ModuleList(
[
nn.ModuleDict(
{
"attention": MultiQueryAttention(config),
"attention_norm": nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
),
"feed_forward": nn.Sequential(
nn.Linear(
config.hidden_size,
4 * config.hidden_size,
),
nn.GELU(),
nn.Linear(
4 * config.hidden_size,
config.hidden_size,
),
),
"feed_forward_norm": nn.LayerNorm(
config.hidden_size,
eps=config.layer_norm_eps,
),
}
)
for _ in range(config.num_layers)
]
)
self.norm = nn.LayerNorm(
config.hidden_size, eps=config.layer_norm_eps
)
self.output = nn.Linear(
config.hidden_size, config.vocab_size, bias=False
)
# Initialize weights
self.apply(self._init_weights)
def _init_weights(self, module: nn.Module) -> None:
"""Initialize weights with scaled normal distribution."""
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(
self,
input_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Forward pass of the model.
Args:
input_ids: Tensor of shape (batch_size, sequence_length)
attention_mask: Optional attention mask
Returns:
Tensor of logits with shape (batch_size, sequence_length, vocab_size)
"""
hidden_states = self.tok_embeddings(input_ids)
# Create causal mask if needed
if attention_mask is None:
attention_mask = torch.triu(
torch.ones(
(input_ids.size(1), input_ids.size(1)),
device=input_ids.device,
dtype=torch.bool,
),
diagonal=1,
)
attention_mask = attention_mask.masked_fill(
attention_mask == 1, float("-inf")
)
# Apply transformer layers
for layer in self.layers:
# Attention block
hidden_states = hidden_states + layer["attention"](
layer["attention_norm"](hidden_states), attention_mask
)
# Feed-forward block
hidden_states = hidden_states + layer["feed_forward"](
layer["feed_forward_norm"](hidden_states)
)
hidden_states = self.norm(hidden_states)
logits = self.output(hidden_states)
return logits
def compute_loss(
self,
input_ids: torch.Tensor,
target_ids: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
) -> torch.Tensor:
"""
Compute cross entropy loss.
Args:
input_ids: Input token ids
target_ids: Target token ids
attention_mask: Optional attention mask
Returns:
Loss value
"""
logits = self(input_ids, attention_mask)
loss = F.cross_entropy(
rearrange(logits, "b s v -> (b s) v"),
rearrange(target_ids, "b s -> (b s)"),
)
return loss
@torch.no_grad()
def _generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: float = 1.0,
) -> torch.Tensor:
"""
Generate new tokens autoregressively.
Args:
input_ids: Starting sequence
max_new_tokens: Number of tokens to generate
temperature: Sampling temperature
top_k: K for top-k sampling
top_p: P for nucleus sampling
repetition_penalty: Penalty for repeating tokens
Returns:
Generated sequence
"""
batch_size, seq_length = input_ids.shape
generated = input_ids.clone()
for _ in range(max_new_tokens):
if generated.size(1) >= self.config.max_sequence_length:
break
# Forward pass
logits = self(generated)[:, -1, :]
# Apply temperature
logits = logits / temperature
# Apply repetition penalty
if repetition_penalty != 1.0:
for i in range(batch_size):
for token_id in set(generated[i].tolist()):
logits[i, token_id] /= repetition_penalty
# Apply top-k sampling
if top_k is not None:
indices_to_remove = (
logits
< torch.topk(logits, top_k)[0][..., -1, None]
)
logits[indices_to_remove] = float("-inf")
# Apply nucleus (top-p) sampling
if top_p is not None:
sorted_logits, sorted_indices = torch.sort(
logits, descending=True
)
cumulative_probs = torch.cumsum(
F.softmax(sorted_logits, dim=-1), dim=-1
)
# Remove tokens with cumulative probability above the threshold
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = (
sorted_indices_to_remove[..., :-1].clone()
)
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = torch.zeros_like(
logits, dtype=torch.bool
)
indices_to_remove.scatter_(
1, sorted_indices, sorted_indices_to_remove
)
logits[indices_to_remove] = float("-inf")
# Sample next token
probs = F.softmax(logits, dim=-1)
next_token = torch.multinomial(probs, num_samples=1)
# Append to sequence
generated = torch.cat([generated, next_token], dim=1)
return generated
def generate(
self,
input_ids: torch.Tensor,
max_new_tokens: int = 100,
temperature: float = 1.0,
top_k: Optional[int] = None,
top_p: Optional[float] = None,
repetition_penalty: float = 1.0,
):
tensor_data = self._generate(
input_ids=input_ids,
max_new_tokens=max_new_tokens,
temperature=temperature,
top_k=top_k,
top_p=top_p,
repetition_penalty=repetition_penalty,
)
return tensor_to_data(tensor_data)
# import torch
# from typing import Optional
class DataType(Enum):
TEXT = "text"
IMAGE = "image"
AUDIO = "audio"
VIDEO = "video"
BINARY = "binary"
class ByteDetokenizer:
"""Utility class for converting model output bytes back to original data formats."""
@staticmethod
def tensor_to_bytes(tensor: torch.Tensor) -> bytes:
"""Convert model output tensor to bytes."""
# Convert logits/probabilities to byte values
if tensor.dim() > 1:
# If we have logits, convert to byte indices
byte_indices = tensor.argmax(dim=-1)
else:
byte_indices = tensor
# Convert to Python bytes
return bytes(
byte_indices.cpu().numpy().astype(np.uint8).tolist()
)
@staticmethod
def decode_text(byte_sequence: bytes) -> str:
"""Convert bytes to text."""
try:
return byte_sequence.decode("utf-8")
except UnicodeDecodeError:
# Try with error handling
return byte_sequence.decode("utf-8", errors="replace")
@staticmethod
def decode_image(
byte_sequence: bytes,
mode: str = "RGB",
size: Optional[tuple] = None,
) -> Image.Image:
"""Convert bytes to image.
Args:
byte_sequence: Raw image bytes
mode: Image mode (RGB, RGBA, L, etc.)
size: Optional tuple of (width, height)
"""
try:
# Try to load as-is first (for standard image formats)
img = Image.open(io.BytesIO(byte_sequence))
if size:
img = img.resize(size)
return img
except:
# If failed, assume raw pixel data
if not size:
# Try to determine size from byte count
pixel_count = len(byte_sequence) // len(mode)
size = (
int(np.sqrt(pixel_count)),
int(np.sqrt(pixel_count)),
)
# Convert raw bytes to pixel array
pixels = np.frombuffer(byte_sequence, dtype=np.uint8)
pixels = pixels.reshape((*size, len(mode)))
return Image.fromarray(pixels, mode=mode)
@staticmethod
def decode_audio(
byte_sequence: bytes,
sample_rate: int = 44100,
channels: int = 2,
sample_width: int = 2,
) -> np.ndarray:
"""Convert bytes to audio samples.
Args:
byte_sequence: Raw audio bytes
sample_rate: Audio sample rate in Hz
channels: Number of audio channels
sample_width: Bytes per sample (1, 2, or 4)
"""
# Determine format string based on sample width
format_str = {
1: "b", # signed char
2: "h", # short
4: "i", # int
}[sample_width]
# Unpack bytes to samples
sample_count = len(byte_sequence) // (channels * sample_width)
samples = struct.unpack(
f"<{sample_count * channels}{format_str}", byte_sequence
)
# Reshape to [samples, channels]
return np.array(samples).reshape(-1, channels)
def decode_data(
self,
model_output: Union[torch.Tensor, bytes],
data_type: DataType,
**kwargs,
) -> Union[str, Image.Image, np.ndarray, bytes]:
"""Main method to decode model output to desired format.
Args:
model_output: Either tensor from model or raw bytes
data_type: Type of data to decode to
**kwargs: Additional parameters for specific decoders
Returns:
Decoded data in specified format
"""
# Convert tensor to bytes if needed
if isinstance(model_output, torch.Tensor):
byte_sequence = self.tensor_to_bytes(model_output)
else:
byte_sequence = model_output
# Decode based on type
if data_type == DataType.TEXT:
return self.decode_text(byte_sequence)
elif data_type == DataType.IMAGE:
return self.decode_image(byte_sequence, **kwargs)
elif data_type == DataType.AUDIO:
return self.decode_audio(byte_sequence, **kwargs)
elif data_type == DataType.VIDEO:
raise NotImplementedError(
"Video decoding not yet implemented"
)
else: # BINARY
return byte_sequence
# Usage example
class Modality(Enum):
TEXT = auto()
IMAGE = auto()
AUDIO = auto()
VIDEO = auto()
BINARY = auto()
MULTIMODAL = auto()
@dataclass
class ModalityInfo:
"""Information about detected modality."""
modality: Modality
confidence: float
metadata: Dict[str, any]
sub_modalities: Optional[List["ModalityInfo"]] = None
class ModalityDetector:
"""Detects data modalities from byte sequences."""
# Common file signatures (magic numbers)
SIGNATURES = {
# Images
b"\xFF\xD8\xFF": "JPEG",
b"\x89PNG\r\n\x1a\n": "PNG",
b"GIF87a": "GIF",
b"GIF89a": "GIF",
b"RIFF": "WEBP",
# Audio
b"RIFF....WAVE": "WAV",
b"ID3": "MP3",
b"\xFF\xFB": "MP3",
b"OggS": "OGG",
# Video
b"\x00\x00\x00\x18ftypmp42": "MP4",
b"\x00\x00\x00\x1Cftypav01": "MP4",
b"\x1A\x45\xDF\xA3": "WEBM",
}
def __init__(self):
self.magic = magic.Magic(mime=True)
def _check_text_probability(self, data: bytes) -> float:
"""Estimate probability that data is text."""
# Check if data is valid UTF-8
try:
data.decode("utf-8")
# Count printable ASCII characters
printable = sum(1 for b in data if 32 <= b <= 126)
return printable / len(data)
except UnicodeDecodeError:
return 0.0
def _check_image_validity(self, data: bytes) -> Tuple[bool, Dict]:
"""Check if data is a valid image and extract metadata."""
try:
with io.BytesIO(data) as bio:
img = Image.open(bio)
return True, {
"format": img.format,
"size": img.size,
"mode": img.mode,
}
except:
return False, {}
def _check_audio_validity(self, data: bytes) -> Tuple[bool, Dict]:
"""Check if data is valid audio and extract metadata."""
try:
with io.BytesIO(data) as bio:
# Try to parse as WAV
with wave.open(bio) as wav:
return True, {
"channels": wav.getnchannels(),
"sample_width": wav.getsampwidth(),
"framerate": wav.getframerate(),
"frames": wav.getnframes(),
}
except:
# Check for other audio signatures
for sig in [b"ID3", b"\xFF\xFB", b"OggS"]:
if data.startswith(sig):
return True, {"format": "compressed_audio"}
return False, {}
def _detect_boundaries(
self, data: bytes
) -> List[Tuple[int, int, Modality]]:
"""Detect boundaries between different modalities in the data."""
boundaries = []
current_pos = 0
while current_pos < len(data):
# Look for known signatures
for sig, format_type in self.SIGNATURES.items():
if data[current_pos:].startswith(sig):
# Found a signature, determine its length
if format_type in ["JPEG", "PNG", "GIF"]:
# Find image end
try:
with io.BytesIO(
data[current_pos:]
) as bio:
img = Image.open(bio)
img.verify()
size = bio.tell()
boundaries.append(
(
current_pos,
current_pos + size,
Modality.IMAGE,
)
)
current_pos += size
continue
except:
pass
# Check for text sections
text_prob = self._check_text_probability(
data[current_pos : current_pos + 1024]
)
if text_prob > 0.8:
# Look for end of text section
end_pos = current_pos + 1
while end_pos < len(data):
if (
self._check_text_probability(
data[end_pos : end_pos + 32]
)
< 0.5
):
break
end_pos += 1
boundaries.append(
(current_pos, end_pos, Modality.TEXT)
)
current_pos = end_pos
continue
current_pos += 1
return boundaries
def detect_modality(self, data: bytes) -> ModalityInfo:
"""Detect modality of byte sequence."""
# First check for single modality
mime_type = self.magic.from_buffer(data)
# Check text
text_prob = self._check_text_probability(data)
if text_prob > 0.9:
return ModalityInfo(
modality=Modality.TEXT,
confidence=text_prob,
metadata={"mime_type": mime_type},
)
# Check image
is_image, image_meta = self._check_image_validity(data)
if is_image:
return ModalityInfo(
modality=Modality.IMAGE,
confidence=1.0,
metadata={**image_meta, "mime_type": mime_type},
)
# Check audio
is_audio, audio_meta = self._check_audio_validity(data)
if is_audio:
return ModalityInfo(
modality=Modality.AUDIO,
confidence=1.0,
metadata={**audio_meta, "mime_type": mime_type},
)
# Check for multimodal content
boundaries = self._detect_boundaries(data)
if len(boundaries) > 1:
sub_modalities = []
for start, end, modality in boundaries:
chunk_data = data[start:end]
sub_info = self.detect_modality(chunk_data)
if sub_info.modality != Modality.BINARY:
sub_modalities.append(sub_info)
if sub_modalities:
return ModalityInfo(
modality=Modality.MULTIMODAL,
confidence=0.8,
metadata={"mime_type": "multipart/mixed"},
sub_modalities=sub_modalities,
)
# Default to binary
return ModalityInfo(
modality=Modality.BINARY,
confidence=0.5,
metadata={"mime_type": mime_type},
)
def split_modalities(
self, data: bytes
) -> List[Tuple[Modality, bytes, Dict]]:
"""Split multimodal data into separate modalities."""
boundaries = self._detect_boundaries(data)
result = []
for start, end, modality in boundaries:
chunk = data[start:end]
info = self.detect_modality(chunk)
result.append((modality, chunk, info.metadata))
return result
class AutoDetectBytesDecoder:
"""Decoder that automatically detects and decodes different modalities."""
def __init__(self):
self.detector = ModalityDetector()
self.text_decoder = ByteDetokenizer() # From previous example
def decode(
self, data: bytes
) -> Union[str, Image.Image, np.ndarray, List[any]]:
"""Automatically detect and decode byte sequence."""
info = self.detector.detect_modality(data)
if info.modality == Modality.MULTIMODAL:
# Handle multimodal content
parts = self.detector.split_modalities(data)
return [
self.decode(chunk) for modality, chunk, _ in parts
]
if info.modality == Modality.TEXT:
return self.text_decoder.decode_text(data)
elif info.modality == Modality.IMAGE:
return self.text_decoder.decode_image(data)
elif info.modality == Modality.AUDIO:
return self.text_decoder.decode_audio(data)
else:
return data
# # Example usage
# def demo_auto_detection():
# """Demonstrate auto modality detection."""
# # Create mixed content
# text = "Hello, World!".encode('utf-8')
# # Create a small test image
# img = Image.new('RGB', (100, 100), color='red')
# img_bytes = io.BytesIO()
# img.save(img_bytes, format='PNG')
# # Combine into multimodal content
# mixed_content = text + img_bytes.getvalue()
# # Initialize decoder
# decoder = AutoDetectBytesDecoder()
# # Decode
# result = decoder.decode(mixed_content)
# if isinstance(result, list):
# print("Detected multimodal content:")
# for i, part in enumerate(result):
# print(f"Part {i+1}: {type(part)}")
# if __name__ == "__main__":
# demo_auto_detection()
def tensor_to_data(tensor: Tensor):
byte_sequence = ByteDetokenizer.tensor_to_bytes(tensor)
# Initialize auto-detector
decoder = AutoDetectBytesDecoder()
# Decode with automatic detection
result = decoder.decode(byte_sequence)
return result
def demo_byte_predictor():
"""Demo with smaller dimensions to test."""
# Initialize model configuration with adjusted dimensions
config = ModelConfig(
vocab_size=256,
hidden_size=128, # Smaller for testing
num_layers=2, # Fewer layers for testing
num_key_value_heads=2,
num_query_heads=4,
dropout=0.1,
max_sequence_length=1024,
)
# Initialize model
model = EnhancedBytePredictor(config)
logger.info("Model initialized")
# Move to GPU if available
device = torch.device(
"cuda" if torch.cuda.is_available() else "cpu"
)
model = model.to(device)
logger.info(f"Using device: {device}")
# Create sample input data
batch_size = 2
seq_length = 16 # Shorter sequence for testing
input_ids = torch.randint(
0, config.vocab_size, (batch_size, seq_length), device=device
)
logger.info(f"Created input tensor of shape: {input_ids.shape}")
# Test forward pass
try:
logits = model(input_ids)
logger.info(
f"Forward pass successful! Output shape: {logits.shape}"
)
# Test loss computation
target_ids = torch.randint(
0,
config.vocab_size,
(batch_size, seq_length),
device=device,
)
loss = model.compute_loss(input_ids, target_ids)
logger.info(
f"Loss computation successful! Loss value: {loss.item():.4f}"
)
# Test generation
prompt = torch.randint(
0,
config.vocab_size,
(1, 4), # Very short prompt for testing
device=device,
)
generated = model.generate(
prompt, max_new_tokens=8, temperature=0.8, top_k=50
)
logger.info(
f"Generation successful! Generated shape: {generated.shape}"
)
except Exception as e:
logger.error(f"Error during execution: {str(e)}")
raise
if __name__ == "__main__":
# Set up logging
# logger.remove() # Remove default handler
# logger.add(sys.stderr, format="<green>{time:HH:mm:ss}</green> | {level} | {message}")
demo_byte_predictor()

@ -1,5 +1,5 @@
import os import os
from typing import List, Dict, Any, Optional, Callable from typing import List, Dict, Any, Optional, Callable, get_type_hints
from dataclasses import dataclass, field from dataclasses import dataclass, field
import json import json
from datetime import datetime from datetime import datetime
@ -111,6 +111,9 @@ class ExecutionContext:
history: List[Dict[str, Any]] = field(default_factory=list) history: List[Dict[str, Any]] = field(default_factory=list)
hints = get_type_hints(func)
class ToolAgent: class ToolAgent:
def __init__( def __init__(
self, self,

@ -3,7 +3,5 @@ from swarms import Agent
Agent( Agent(
agent_name="Stock-Analysis-Agent", agent_name="Stock-Analysis-Agent",
model_name="gpt-4o-mini", model_name="gpt-4o-mini",
max_loops="auto", max_loops=1,
streaming_on=True,
interactive=True,
).run("What are 5 hft algorithms") ).run("What are 5 hft algorithms")

@ -771,8 +771,11 @@ class Agent:
self, self,
task: Optional[str] = None, task: Optional[str] = None,
img: Optional[str] = None, img: Optional[str] = None,
speech: Optional[str] = None,
video: Optional[str] = None,
is_last: Optional[bool] = False, is_last: Optional[bool] = False,
print_task: Optional[bool] = False, print_task: Optional[bool] = False,
generate_speech: Optional[bool] = False,
*args, *args,
**kwargs, **kwargs,
) -> Any: ) -> Any:
@ -2294,12 +2297,13 @@ class Agent:
self, self,
task: Optional[str] = None, task: Optional[str] = None,
img: Optional[str] = None, img: Optional[str] = None,
device: str = "cpu", # gpu device: Optional[str] = "cpu", # gpu
device_id: int = 0, device_id: Optional[int] = 0,
all_cores: bool = True, all_cores: Optional[bool] = True,
scheduled_run_date: Optional[datetime] = None, scheduled_run_date: Optional[datetime] = None,
do_not_use_cluster_ops: bool = False, do_not_use_cluster_ops: Optional[bool] = False,
all_gpus: bool = False, all_gpus: Optional[bool] = False,
generate_speech: Optional[bool] = False,
*args, *args,
**kwargs, **kwargs,
) -> Any: ) -> Any:
@ -2346,7 +2350,12 @@ class Agent:
# If cluster ops disabled, run directly # If cluster ops disabled, run directly
if do_not_use_cluster_ops is True: if do_not_use_cluster_ops is True:
logger.info("Running without cluster operations") logger.info("Running without cluster operations")
return self._run(task=task, img=img, *args, **kwargs) return self._run(
task=task,
img=img,
generate_speech=generate_speech * args,
**kwargs,
)
else: else:
return exec_callable_with_clusterops( return exec_callable_with_clusterops(
@ -2357,6 +2366,7 @@ class Agent:
func=self._run, func=self._run,
task=task, task=task,
img=img, img=img,
generate_speech=generate_speech,
*args, *args,
**kwargs, **kwargs,
) )

@ -0,0 +1,73 @@
import os
from loguru import logger
import pygame
import requests
import tempfile
from openai import OpenAI
class OpenAITTS:
"""
A class to interact with OpenAI API and play the generated audio with improved streaming capabilities.
"""
def __init__(self, *args, **kwargs):
self.client = OpenAI(
api_key=os.getenv("OPENAI_API_KEY"), *args, **kwargs
)
pygame.init()
def run(
self, task: str, play_sound: bool = True, *args, **kwargs
):
"""
Run a task with the OpenAI API and optionally play the generated audio with improved streaming.
Args:
task (str): The task to be executed.
play_sound (bool): If True, play the generated audio.
Returns:
None
"""
try:
response = self.client.audio.speech.create(
model="tts-1",
voice="nova",
input=task,
*args,
**kwargs,
)
audio_url = response["url"]
logger.info("Task completed successfully.")
if play_sound:
with tempfile.NamedTemporaryFile(
delete=False, suffix=".mp3"
) as tmp_file:
with requests.get(audio_url, stream=True) as r:
r.raise_for_status()
for chunk in r.iter_content(chunk_size=8192):
tmp_file.write(chunk)
pygame.mixer.music.load(tmp_file.name)
pygame.mixer.music.play()
while pygame.mixer.music.get_busy():
pygame.time.Clock().tick(10)
except Exception as e:
logger.error(f"Error during task execution: {str(e)}")
# client = OpenAITTS(api_key=os.getenv("OPENAI_API_KEY"))
# client.run("Hello world! This is a streaming test.", play_sound=True)
def text_to_speech(
task: str, play_sound: bool = True, *args, **kwargs
):
out = OpenAITTS().run(
task, play_sound=play_sound, *args, **kwargs
)
return out
# print(text_to_speech(task="hello"))
Loading…
Cancel
Save