[TESTS][CLEANUP]]

pull/439/head
Kye 9 months ago
parent f93bc98952
commit 2f88e92930

1
.gitignore vendored

@ -15,6 +15,7 @@ Unit Testing Agent_state.json
Devin_state.json Devin_state.json
swarms/__pycache__ swarms/__pycache__
artifacts artifacts
transcript_generator.json
venv venv
.DS_Store .DS_Store
Cargo.lock Cargo.lock

@ -20,9 +20,11 @@ agent = Agent(
) )
# Run the Agent on a task # Run the Agent on a task
# out = agent("Generate a transcript for a youtube video on what swarms are!") out = agent.run("Generate a transcript for a youtube video on what swarms are!")
print(out)
# Save the state
check = agent.save_state( check = agent.save_state(
"transcript_generator.json", "transcript_generator.json",
"Generate a transcript for a youtube video on what swarms are!", "Generate a transcript for a youtube video on what swarms are!",
) )
print(check)

@ -13,6 +13,7 @@ from swarms.models.mistral import Mistral # noqa: E402
from swarms.models.mixtral import Mixtral # noqa: E402 from swarms.models.mixtral import Mixtral # noqa: E402
from swarms.models.mpt import MPT7B # noqa: E402 from swarms.models.mpt import MPT7B # noqa: E402
from swarms.models.nougat import Nougat # noqa: E402 from swarms.models.nougat import Nougat # noqa: E402
from swarms.models.palm import GooglePalm as Palm # noqa: E402
from swarms.models.openai_tts import OpenAITTS # noqa: E402 from swarms.models.openai_tts import OpenAITTS # noqa: E402
from swarms.models.popular_llms import ( from swarms.models.popular_llms import (
AnthropicChat as Anthropic, AnthropicChat as Anthropic,
@ -42,7 +43,7 @@ from swarms.models.types import ( # noqa: E402
VideoModality, VideoModality,
) )
from swarms.models.vilt import Vilt # noqa: E402 from swarms.models.vilt import Vilt # noqa: E402
from swarms.models.openai_embeddings import OpenAIEmbeddings
__all__ = [ __all__ = [
"AbstractLLM", "AbstractLLM",
@ -62,20 +63,22 @@ __all__ = [
"Mistral", "Mistral",
"Mixtral", "Mixtral",
"MPT7B", "MPT7B",
"MultimodalData",
"Nougat", "Nougat",
"OpenAI", "OpenAI",
"OpenAIChat", "OpenAIChat",
"OpenAIEmbeddings",
"OpenAITTS", "OpenAITTS",
"OctoAIChat",
"Palm",
"QwenVLMultiModal", "QwenVLMultiModal",
"Replicate", "Replicate",
"SamplingParams", "SamplingParams",
"SamplingType", "SamplingType",
"TextModality", "TextModality",
"TogetherLLM", "MultimodalData",
"Vilt",
"AudioModality",
"ImageModality", "ImageModality",
"AudioModality",
"VideoModality", "VideoModality",
"OctoAIChat", "TogetherLLM",
] "Vilt",
]

@ -1,80 +0,0 @@
from typing import Any
import cv2
from swarms.models.base_multimodal_model import BaseMultiModalModel
from swarms.models.sam_supervision import SegmentAnythingMarkGenerator
from swarms.utils.supervision_masking import refine_marks
from swarms.utils.supervision_visualizer import MarkVisualizer
class GPT4VSAM(BaseMultiModalModel):
"""
GPT4VSAM class represents a multi-modal model that combines the capabilities of GPT-4 and SegmentAnythingMarkGenerator.
It takes an instance of BaseMultiModalModel (vlm) and a device as input and provides methods for loading images and making predictions.
Args:
vlm (BaseMultiModalModel): An instance of BaseMultiModalModel representing the visual language model.
device (str, optional): The device to be used for computation. Defaults to "cuda".
Attributes:
vlm (BaseMultiModalModel): An instance of BaseMultiModalModel representing the visual language model.
device (str): The device to be used for computation.
sam (SegmentAnythingMarkGenerator): An instance of SegmentAnythingMarkGenerator for generating marks.
visualizer (MarkVisualizer): An instance of MarkVisualizer for visualizing marks.
Methods:
load_img(img: str) -> Any: Loads an image from the given file path.
__call__(task: str, img: str, *args, **kwargs) -> Any: Makes predictions using the visual language model.
"""
def __init__(
self,
vlm: BaseMultiModalModel,
device: str = "cuda",
return_related_marks: bool = False,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.vlm = vlm
self.device = device
self.return_related_marks = return_related_marks
self.sam = SegmentAnythingMarkGenerator(device, *args, **kwargs)
self.visualizer = MarkVisualizer(*args, **kwargs)
def load_img(self, img: str) -> Any:
"""
Loads an image from the given file path.
Args:
img (str): The file path of the image.
Returns:
Any: The loaded image.
"""
return cv2.imread(img)
def __call__(self, task: str, img: str, *args, **kwargs) -> Any:
"""
Makes predictions using the visual language model.
Args:
task (str): The task for which predictions are to be made.
img (str): The file path of the image.
*args: Additional positional arguments.
**kwargs: Additional keyword arguments.
Returns:
Any: The predictions made by the visual language model.
"""
img = self.load_img(img)
marks = self.sam(image=img)
marks = refine_marks(marks=marks)
return self.vlm(task, img, *args, **kwargs)

@ -4,12 +4,7 @@ import torch
from termcolor import colored from termcolor import colored
from swarms.models.base_llm import AbstractLLM from swarms.models.base_llm import AbstractLLM
from transformers.pipelines import pipeline
if torch.cuda.is_available():
try:
from optimum.nvidia.pipelines import pipeline
except ImportError:
from transformers.pipelines import pipeline
class HuggingfacePipeline(AbstractLLM): class HuggingfacePipeline(AbstractLLM):

@ -1,244 +0,0 @@
import logging
import os
import torch
from numpy.linalg import norm
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
from swarms.models.base_embedding_model import BaseEmbeddingModel
def cos_sim(a, b):
return a @ b.T / (norm(a) * norm(b))
class JinaEmbeddings(BaseEmbeddingModel):
"""
Jina Embeddings model.
Args:
model_id (str): The model id to use. Default is "jinaai/jina-embeddings-v2-base-en".
device (str): The device to run the model on. Default is "cuda".
huggingface_api_key (str): The Hugging Face API key. Default is None.
max_length (int): The maximum length of the response. Default is 500.
quantize (bool): Whether to quantize the model. Default is False.
quantization_config (dict): The quantization configuration. Default is None.
verbose (bool): Whether to print verbose logs. Default is False.
distributed (bool): Whether to use distributed processing. Default is False.
decoding (bool): Whether to use decoding. Default is False.
cos_sim (callable): The cosine similarity function. Default is cos_sim.
Methods:
run: _description_
Examples:
>>> model = JinaEmbeddings(
>>> max_length=8192,
>>> device="cuda",
>>> quantize=True,
>>> huggingface_api_key="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"
>>> )
>>> embeddings = model("Encode this super long document text")
"""
def __init__(
self,
model_id: str = "jinaai/jina-embeddings-v2-base-en",
device: str = None,
huggingface_api_key: str = None,
max_length: int = 500,
quantize: bool = False,
quantization_config: dict = None,
verbose=False,
distributed=False,
decoding=False,
cos_sim: callable = cos_sim,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.logger = logging.getLogger(__name__)
self.device = (
device
if device
else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.huggingface_api_key = huggingface_api_key
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
self.cos_sim = cos_sim
if self.distributed:
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
# If API key then set it
if self.huggingface_api_key:
os.environ["HF_TOKEN"] = self.huggingface_api_key
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
trust_remote_code=True,
)
self.model # .to(self.device)
except Exception as e:
self.logger.error(
f"Failed to load the model or the tokenizer: {e}"
)
raise
"""Load the model"""
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id
)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
trust_remote_code=True,
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
"Failed to load the model or the tokenizer:"
f" {error}"
)
raise
def run(self, task: str, *args, **kwargs):
"""
Generate a response based on the prompt text.
Args:
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
max_length = self.max_length
try:
embeddings = self.model.encode(
[task], max_length=max_length, *args, **kwargs
)
if self.cos_sim:
print(cos_sim(embeddings[0], embeddings[1]))
else:
return embeddings[0]
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def run_async(self, task: str, *args, **kwargs) -> str:
"""
Run the model asynchronously
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def __call__(self, task: str, *args, **kwargs):
"""
Generate a response based on the prompt text.
Args:
- task (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
embeddings = self.model.encode(
[task], max_length=max_length, *args, **kwargs
)
if self.cos_sim:
print(cos_sim(embeddings[0], embeddings[1]))
else:
return embeddings[0]
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def __call_async__(self, task: str, *args, **kwargs) -> str:
"""Call the model asynchronously""" ""
return await self.run_async(task, *args, **kwargs)
def save_model(self, path: str):
"""Save the model to a given path"""
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def gpu_available(self) -> bool:
"""Check if GPU is available"""
return torch.cuda.is_available()
def memory_consumption(self) -> dict:
"""Get the memory consumption of the GPU"""
if self.gpu_available():
torch.cuda.synchronize()
allocated = torch.cuda.memory_allocated()
reserved = torch.cuda.memory_reserved()
return {"allocated": allocated, "reserved": reserved}
else:
return {"error": "GPU not available"}
def try_embed_chunk(self, chunk: str) -> list[float]:
return super().try_embed_chunk(chunk)

@ -12,9 +12,10 @@ from transformers import (
BitsAndBytesConfig, BitsAndBytesConfig,
TextStreamer, TextStreamer,
) )
from swarms.models.base_llm import AbstractLLM
class LlamaFunctionCaller: class LlamaFunctionCaller(AbstractLLM):
""" """
A class to manage and execute Llama functions. A class to manage and execute Llama functions.

@ -1,142 +0,0 @@
import os
from dataclasses import dataclass
from typing import Tuple
import numpy as np
import requests
import torch
import torch.nn.functional as F
from skimage import transform
from torch import Tensor
def sam_model_registry():
pass
@dataclass
class MedicalSAM:
"""
MedicalSAM class for performing semantic segmentation on medical images using the SAM model.
Attributes:
model_path (str): The file path to the model weights.
device (str): The device to run the model on (default is "cuda:0").
model_weights_url (str): The URL to download the model weights from.
Methods:
__post_init__(): Initializes the MedicalSAM object.
download_model_weights(model_path: str): Downloads the model weights from the specified URL and saves them to the given file path.
preprocess(img): Preprocesses the input image.
run(img, box): Runs the semantic segmentation on the input image within the specified bounding box.
"""
model_path: str
device: str = "cuda:0"
model_weights_url: str = "https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth"
def __post_init__(self):
if not os.path.exists(self.model_path):
self.download_model_weights(self.model_path)
self.model = sam_model_registry["vit_b"](
checkpoint=self.model_path
)
self.model = self.model.to(self.device)
self.model.eval()
def download_model_weights(self, model_path: str):
"""
Downloads the model weights from the specified URL and saves them to the given file path.
Args:
model_path (str): The file path where the model weights will be saved.
Raises:
Exception: If the model weights fail to download.
"""
response = requests.get(self.model_weights_url, stream=True)
if response.status_code == 200:
with open(model_path, "wb") as f:
f.write(response.content)
else:
raise Exception("Failed to download model weights.")
def preprocess(self, img: np.ndarray) -> Tuple[Tensor, int, int]:
"""
Preprocesses the input image.
Args:
img: The input image.
Returns:
img_tensor: The preprocessed image tensor.
H: The original height of the image.
W: The original width of the image.
"""
if len(img.shape) == 2:
img = np.repeat(img[:, :, None], 3, axis=-1)
H, W, _ = img.shape
img = transform.resize(
img,
(1024, 1024),
order=3,
preserve_range=True,
anti_aliasing=True,
).astype(np.uint8)
img = img - img.min() / np.clip(
img.max() - img.min(), a_min=1e-8, a_max=None
)
img = torch.tensor(img).float().permute(2, 0, 1).unsqueeze(0)
return img, H, W
@torch.no_grad()
def run(self, img: np.ndarray, box: np.ndarray) -> np.ndarray:
"""
Runs the semantic segmentation on the input image within the specified bounding box.
Args:
img: The input image.
box: The bounding box coordinates (x1, y1, x2, y2).
Returns:
medsam_seg: The segmented image.
"""
img_tensor, H, W = self.preprocess(img)
img_tensor = img_tensor.to(self.device)
box_1024 = box / np.array([W, H, W, H]) * 1024
img = self.model.image_encoder(img_tensor)
box_torch = torch.as_tensor(
box_1024, dtype=torch.float, device=img_tensor.device
)
if len(box_torch.shape) == 2:
box_torch = box_torch[:, None, :]
sparse_embeddings, dense_embeddings = self.model.prompt_encoder(
points=None,
boxes=box_torch,
masks=None,
)
low_res_logits, _ = self.model.mask_decoder(
image_embeddings=img,
image_pe=self.model.prompt_encoder.get_dense_pe(),
sparse_prompt_embeddings=sparse_embeddings,
dense_prompt_embeddings=dense_embeddings,
multimask_output=False,
)
low_res_pred = torch.sigmoid(low_res_logits)
low_res_pred = F.interpolate(
low_res_pred,
size=(H, W),
mode="bilinear",
align_corners=False,
)
low_res_pred = low_res_pred.squeeze().cpu().numpy()
medsam_seg = (low_res_pred > 0.5).astype(np.uint8)
return medsam_seg

@ -1,10 +0,0 @@
from swarms.models.popular_llms import OpenAIChat
class MistralAPILLM(OpenAIChat):
def __init__(self, url):
super().__init__()
self.openai_proxy_url = url
def __call__(self, task: str):
super().__call__(task)

@ -1,553 +1,5 @@
from __future__ import annotations from langchain_community.embeddings.openai import OpenAIEmbeddings
import logging __all__ = [
import warnings "OpenAIEmbeddings",
from typing import Any, Callable, Literal, Sequence ]
import numpy as np
from pydantic import model_validator, ConfigDict, BaseModel, Field
from tenacity import (
AsyncRetrying,
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from swarms.models.embeddings_base import Embeddings
def get_from_dict_or_env(
values: dict, key: str, env_key: str, default: Any = None
) -> Any:
import os
return values.get(key) or os.getenv(env_key) or default
def get_pydantic_field_names(cls: Any) -> set[str]:
return set(cls.__annotations__.keys())
logger = logging.getLogger(__name__)
def _create_retry_decorator(
embeddings: OpenAIEmbeddings,
) -> Callable[[Any], Any]:
import llm
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
return retry(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(
multiplier=1, min=min_seconds, max=max_seconds
),
retry=(
retry_if_exception_type(llm.error.Timeout)
| retry_if_exception_type(llm.error.APIError)
| retry_if_exception_type(llm.error.APIConnectionError)
| retry_if_exception_type(llm.error.RateLimitError)
| retry_if_exception_type(llm.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def _async_retry_decorator(embeddings: OpenAIEmbeddings) -> Any:
import llm
min_seconds = 4
max_seconds = 10
# Wait 2^x * 1 second between each retry starting with
# 4 seconds, then up to 10 seconds, then 10 seconds afterwards
async_retrying = AsyncRetrying(
reraise=True,
stop=stop_after_attempt(embeddings.max_retries),
wait=wait_exponential(
multiplier=1, min=min_seconds, max=max_seconds
),
retry=(
retry_if_exception_type(llm.error.Timeout)
| retry_if_exception_type(llm.error.APIError)
| retry_if_exception_type(llm.error.APIConnectionError)
| retry_if_exception_type(llm.error.RateLimitError)
| retry_if_exception_type(llm.error.ServiceUnavailableError)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def wrap(func: Callable) -> Callable:
async def wrapped_f(*args: Any, **kwargs: Any) -> Callable:
async for _ in async_retrying:
return await func(*args, **kwargs)
raise AssertionError("this is unreachable")
return wrapped_f
return wrap
# https://stackoverflow.com/questions/76469415/getting-embeddings-of-length-1-from-langchain-openaiembeddings
def _check_response(response: dict) -> dict:
if any(len(d["embedding"]) == 1 for d in response["data"]):
import llm
raise llm.error.APIError("OpenAI API returned an empty embedding")
return response
def embed_with_retry(embeddings: OpenAIEmbeddings, **kwargs: Any) -> Any:
"""Use tenacity to retry the embedding call."""
retry_decorator = _create_retry_decorator(embeddings)
@retry_decorator
def _embed_with_retry(**kwargs: Any) -> Any:
response = embeddings.client.create(**kwargs)
return _check_response(response)
return _embed_with_retry(**kwargs)
async def async_embed_with_retry(
embeddings: OpenAIEmbeddings, **kwargs: Any
) -> Any:
"""Use tenacity to retry the embedding call."""
@_async_retry_decorator(embeddings)
async def _async_embed_with_retry(**kwargs: Any) -> Any:
response = await embeddings.client.acreate(**kwargs)
return _check_response(response)
return await _async_embed_with_retry(**kwargs)
class OpenAIEmbeddings(BaseModel, Embeddings):
"""OpenAI embedding models.
To use, you should have the ``openai`` python package installed, and the
environment variable ``OPENAI_API_KEY`` set with your API key or pass it
as a named parameter to the constructor.
Example:
.. code-block:: python
from langchain.embeddings import OpenAIEmbeddings
openai = OpenAIEmbeddings(openai_api_key="my-api-key")
In order to use the library with Microsoft Azure endpoints, you need to set
the OPENAI_API_TYPE, OPENAI_API_BASE, OPENAI_API_KEY and OPENAI_API_VERSION.
The OPENAI_API_TYPE must be set to 'azure' and the others correspond to
the properties of your endpoint.
In addition, the deployment name must be passed as the model parameter.
Example:
.. code-block:: python
import os
os.environ["OPENAI_API_TYPE"] = "azure"
os.environ["OPENAI_API_BASE"] = "https://<your-endpoint.openai.azure.com/"
os.environ["OPENAI_API_KEY"] = "your AzureOpenAI key"
os.environ["OPENAI_API_VERSION"] = "2023-05-15"
os.environ["OPENAI_PROXY"] = "http://your-corporate-proxy:8080"
from langchain.embeddings.openai import OpenAIEmbeddings
embeddings = OpenAIEmbeddings(
deployment="your-embeddings-deployment-name",
model="your-embeddings-model-name",
openai_api_base="https://your-endpoint.openai.azure.com/",
openai_api_type="azure",
)
text = "This is a test query."
query_result = embeddings.embed_query(text)
"""
client: Any = None #: :meta private:
model: str = "text-embedding-ada-002"
deployment: str = (
model # to support Azure OpenAI Service custom deployment names
)
openai_api_version: str | None = None
# to support Azure OpenAI Service custom endpoints
openai_api_base: str | None = None
# to support Azure OpenAI Service custom endpoints
openai_api_type: str | None = None
# to support explicit proxy for OpenAI
openai_proxy: str | None = None
embedding_ctx_length: int = 8191
"""The maximum number of tokens to embed at once."""
openai_api_key: str | None = None
openai_organization: str | None = None
allowed_special: Literal["all"] | set[str] = set()
disallowed_special: Literal["all"] | set[str] | Sequence[str] = "all"
chunk_size: int = 1000
"""Maximum number of texts to embed in each batch"""
max_retries: int = 6
"""Maximum number of retries to make when generating."""
request_timeout: float | tuple[float, float] | None = None
"""Timeout in seconds for the OpenAPI request."""
headers: Any = None
tiktoken_model_name: str | None = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
show_progress_bar: bool = False
"""Whether to show a progress bar when embedding."""
model_kwargs: dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
model_config = ConfigDict(extra="forbid")
@model_validator(mode="before")
@classmethod
def build_extra(cls, values: dict[str, Any]) -> dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
for field_name in list(values):
if field_name in extra:
raise ValueError(f"Found {field_name} supplied twice.")
if field_name not in all_required_field_names:
warnings.warn(
f"""WARNING! {field_name} is not default parameter.
{field_name} was transferred to model_kwargs.
Please confirm that {field_name} is what you intended."""
)
extra[field_name] = values.pop(field_name)
invalid_model_kwargs = all_required_field_names.intersection(
extra.keys()
)
if invalid_model_kwargs:
raise ValueError(
f"Parameters {invalid_model_kwargs} should be"
" specified explicitly. Instead they were passed in"
" as part of `model_kwargs` parameter."
)
values["model_kwargs"] = extra
return values
@model_validator()
@classmethod
def validate_environment(cls, values: dict) -> dict:
"""Validate that api key and python package exists in environment."""
values["openai_api_key"] = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_base"] = get_from_dict_or_env(
values,
"openai_api_base",
"OPENAI_API_BASE",
default="",
)
values["openai_api_type"] = get_from_dict_or_env(
values,
"openai_api_type",
"OPENAI_API_TYPE",
default="",
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
if values["openai_api_type"] in (
"azure",
"azure_ad",
"azuread",
):
default_api_version = "2022-12-01"
else:
default_api_version = ""
values["openai_api_version"] = get_from_dict_or_env(
values,
"openai_api_version",
"OPENAI_API_VERSION",
default=default_api_version,
)
values["openai_organization"] = get_from_dict_or_env(
values,
"openai_organization",
"OPENAI_ORGANIZATION",
default="",
)
try:
import llm
values["client"] = llm.Embedding
except ImportError:
raise ImportError(
"Could not import openai python package. "
"Please install it with `pip install openai`."
)
return values
@property
def _invocation_params(self) -> dict:
openai_args = {
"model": self.model,
"request_timeout": self.request_timeout,
"headers": self.headers,
"api_key": self.openai_api_key,
"organization": self.openai_organization,
"api_base": self.openai_api_base,
"api_type": self.openai_api_type,
"api_version": self.openai_api_version,
**self.model_kwargs,
}
if self.openai_api_type in ("azure", "azure_ad", "azuread"):
openai_args["engine"] = self.deployment
if self.openai_proxy:
import llm
llm.proxy = {
"http": self.openai_proxy,
"https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501
return openai_args
def _get_len_safe_embeddings(
self,
texts: list[str],
*,
engine: str,
chunk_size: int | None = None,
) -> list[list[float]]:
embeddings: list[list[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning(
"Warning: model not found. Using cl100k_base" " encoding."
)
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: list[list[float]] = []
_chunk_size = chunk_size or self.chunk_size
if self.show_progress_bar:
try:
import tqdm
_iter = tqdm.tqdm(range(0, len(tokens), _chunk_size))
except ImportError:
_iter = range(0, len(tokens), _chunk_size)
else:
_iter = range(0, len(tokens), _chunk_size)
for i in _iter:
response = embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(
r["embedding"] for r in response["data"]
)
results: list[list[list[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: list[list[int]] = [
[] for _ in range(len(texts))
]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = embed_with_retry(
self,
input="",
**self._invocation_params,
)["data"][0]["embedding"]
else:
average = np.average(
_result, axis=0, weights=num_tokens_in_batch[i]
)
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
# please refer to
# https://github.com/openai/openai-cookbook/blob/main/examples/Embedding_long_inputs.ipynb
async def _aget_len_safe_embeddings(
self,
texts: list[str],
*,
engine: str,
chunk_size: int | None = None,
) -> list[list[float]]:
embeddings: list[list[float]] = [[] for _ in range(len(texts))]
try:
import tiktoken
except ImportError:
raise ImportError(
"Could not import tiktoken python package. "
"This is needed in order to for OpenAIEmbeddings. "
"Please install it with `pip install tiktoken`."
)
tokens = []
indices = []
model_name = self.tiktoken_model_name or self.model
try:
encoding = tiktoken.encoding_for_model(model_name)
except KeyError:
logger.warning(
"Warning: model not found. Using cl100k_base" " encoding."
)
model = "cl100k_base"
encoding = tiktoken.get_encoding(model)
for i, text in enumerate(texts):
if self.model.endswith("001"):
# See: https://github.com/openai/openai-python/issues/418#issuecomment-1525939500
# replace newlines, which can negatively affect performance.
text = text.replace("\n", " ")
token = encoding.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
for j in range(0, len(token), self.embedding_ctx_length):
tokens.append(token[j : j + self.embedding_ctx_length])
indices.append(i)
batched_embeddings: list[list[float]] = []
_chunk_size = chunk_size or self.chunk_size
for i in range(0, len(tokens), _chunk_size):
response = await async_embed_with_retry(
self,
input=tokens[i : i + _chunk_size],
**self._invocation_params,
)
batched_embeddings.extend(
r["embedding"] for r in response["data"]
)
results: list[list[list[float]]] = [[] for _ in range(len(texts))]
num_tokens_in_batch: list[list[int]] = [
[] for _ in range(len(texts))
]
for i in range(len(indices)):
results[indices[i]].append(batched_embeddings[i])
num_tokens_in_batch[indices[i]].append(len(tokens[i]))
for i in range(len(texts)):
_result = results[i]
if len(_result) == 0:
average = (
await async_embed_with_retry(
self,
input="",
**self._invocation_params,
)
)["data"][0]["embedding"]
else:
average = np.average(
_result, axis=0, weights=num_tokens_in_batch[i]
)
embeddings[i] = (average / np.linalg.norm(average)).tolist()
return embeddings
def embed_documents(
self, texts: list[str], chunk_size: int | None = 0
) -> list[list[float]]:
"""Call out to OpenAI's embedding endpoint for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return self._get_len_safe_embeddings(texts, engine=self.deployment)
async def aembed_documents(
self, texts: list[str], chunk_size: int | None = 0
) -> list[list[float]]:
"""Call out to OpenAI's embedding endpoint async for embedding search docs.
Args:
texts: The list of texts to embed.
chunk_size: The chunk size of embeddings. If None, will use the chunk size
specified by the class.
Returns:
List of embeddings, one for each text.
"""
# NOTE: to keep things simple, we assume the list may contain texts longer
# than the maximum context and use length-safe embedding function.
return await self._aget_len_safe_embeddings(
texts, engine=self.deployment
)
def embed_query(self, text: str) -> list[float]:
"""Call out to OpenAI's embedding endpoint for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
return self.embed_documents([text])[0]
async def aembed_query(self, text: str) -> list[float]:
"""Call out to OpenAI's embedding endpoint async for embedding query text.
Args:
text: The text to embed.
Returns:
Embedding for the text.
"""
embeddings = await self.aembed_documents([text])
return embeddings[0]

@ -1,182 +1,5 @@
from __future__ import annotations from langchain_community.llms.google_palm import GooglePalm
import logging __all__ = [
from typing import Any, Callable "GooglePalm",
]
from langchain.callbacks.manager import CallbackManagerForLLMRun
from langchain.llms import BaseLLM
from langchain.pydantic_v1 import BaseModel
from langchain.schema import Generation, LLMResult
from langchain.utils import get_from_dict_or_env
from tenacity import (
before_sleep_log,
retry,
retry_if_exception_type,
stop_after_attempt,
wait_exponential,
)
from pydantic import model_validator
logger = logging.getLogger(__name__)
def _create_retry_decorator() -> Callable[[Any], Any]:
"""Returns a tenacity retry decorator, preconfigured to handle PaLM exceptions"""
try:
import google.api_core.exceptions
except ImportError:
raise ImportError(
"Could not import google-api-core python package. "
"Please install it with `pip install google-api-core`."
)
multiplier = 2
min_seconds = 1
max_seconds = 60
max_retries = 10
return retry(
reraise=True,
stop=stop_after_attempt(max_retries),
wait=wait_exponential(
multiplier=multiplier, min=min_seconds, max=max_seconds
),
retry=(
retry_if_exception_type(
google.api_core.exceptions.ResourceExhausted
)
| retry_if_exception_type(
google.api_core.exceptions.ServiceUnavailable
)
| retry_if_exception_type(
google.api_core.exceptions.GoogleAPIError
)
),
before_sleep=before_sleep_log(logger, logging.WARNING),
)
def generate_with_retry(llm: GooglePalm, **kwargs: Any) -> Any:
"""Use tenacity to retry the completion call."""
retry_decorator = _create_retry_decorator()
@retry_decorator
def _generate_with_retry(**kwargs: Any) -> Any:
return llm.client.generate_text(**kwargs)
return _generate_with_retry(**kwargs)
def _strip_erroneous_leading_spaces(text: str) -> str:
"""Strip erroneous leading spaces from text.
The PaLM API will sometimes erroneously return a single leading space in all
lines > 1. This function strips that space.
"""
has_leading_space = all(
not line or line[0] == " " for line in text.split("\n")[1:]
)
if has_leading_space:
return text.replace("\n ", "\n")
else:
return text
class GooglePalm(BaseLLM, BaseModel):
"""Google PaLM models."""
client: Any #: :meta private:
google_api_key: str | None
model_name: str = "models/text-bison-001"
"""Model name to use."""
temperature: float = 0.7
"""Run inference with this temperature. Must by in the closed interval
[0.0, 1.0]."""
top_p: float | None = None
"""Decode using nucleus sampling: consider the smallest set of tokens whose
probability sum is at least top_p. Must be in the closed interval [0.0, 1.0]."""
top_k: int | None = None
"""Decode using top-k sampling: consider the set of top_k most probable tokens.
Must be positive."""
max_output_tokens: int | None = None
"""Maximum number of tokens to include in a candidate. Must be greater than zero.
If unset, will default to 64."""
n: int = 1
"""Number of chat completions to generate for each prompt. Note that the API may
not return the full n completions if duplicates are generated."""
@model_validator()
@classmethod
def validate_environment(cls, values: dict) -> dict:
"""Validate api key, python package exists."""
google_api_key = get_from_dict_or_env(
values, "google_api_key", "GOOGLE_API_KEY"
)
try:
import google.generativeai as genai
genai.configure(api_key=google_api_key)
except ImportError:
raise ImportError(
"Could not import google-generativeai python package."
" Please install it with `pip install"
" google-generativeai`."
)
values["client"] = genai
if (
values["temperature"] is not None
and not 0 <= values["temperature"] <= 1
):
raise ValueError("temperature must be in the range [0.0, 1.0]")
if values["top_p"] is not None and not 0 <= values["top_p"] <= 1:
raise ValueError("top_p must be in the range [0.0, 1.0]")
if values["top_k"] is not None and values["top_k"] <= 0:
raise ValueError("top_k must be positive")
if (
values["max_output_tokens"] is not None
and values["max_output_tokens"] <= 0
):
raise ValueError("max_output_tokens must be greater than zero")
return values
def _generate(
self,
prompts: list[str],
stop: list[str] | None = None,
run_manager: CallbackManagerForLLMRun | None = None,
**kwargs: Any,
) -> LLMResult:
generations = []
for prompt in prompts:
completion = generate_with_retry(
self,
model=self.model_name,
prompt=prompt,
stop_sequences=stop,
temperature=self.temperature,
top_p=self.top_p,
top_k=self.top_k,
max_output_tokens=self.max_output_tokens,
candidate_count=self.n,
**kwargs,
)
prompt_generations = []
for candidate in completion.candidates:
raw_text = candidate["output"]
stripped_text = _strip_erroneous_leading_spaces(raw_text)
prompt_generations.append(Generation(text=stripped_text))
generations.append(prompt_generations)
return LLMResult(generations=generations)
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "google_palm"

@ -11,7 +11,6 @@ from langchain.llms.openai import OpenAI # , OpenAIChat, AzureOpenAI
from langchain_community.llms.octoai_endpoint import OctoAIEndpoint from langchain_community.llms.octoai_endpoint import OctoAIEndpoint
from langchain.llms.replicate import Replicate from langchain.llms.replicate import Replicate
class AnthropicChat(Anthropic): class AnthropicChat(Anthropic):
def __call__(self, *args, **kwargs): def __call__(self, *args, **kwargs):
return self.invoke(*args, **kwargs) return self.invoke(*args, **kwargs)

@ -1,16 +0,0 @@
"""
TROCR for Multi-Modal OCR tasks
"""
class TrOCR:
def __init__(
self,
):
pass
def __call__(self):
pass

@ -1,52 +0,0 @@
from typing import List
from ultralytics import YOLO
from swarms.models.base_multimodal_model import BaseMultiModalModel
class UltralyticsModel(BaseMultiModalModel):
"""
Initializes an instance of the Ultralytics model.
Args:
model_name (str): The name of the model.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
"""
def __init__(self, model_name: str = "yolov8n.pt", *args, **kwargs):
super().__init__(*args, **kwargs)
self.model_name = model_name
try:
self.model = YOLO(model_name, *args, **kwargs)
except Exception as e:
raise ValueError(
f"Failed to initialize Ultralytics model: {str(e)}"
)
def __call__(
self, task: str, tasks: List[str] = None, *args, **kwargs
):
"""
Calls the Ultralytics model.
Args:
task (str): The task to perform.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Returns:
The result of the model call.
"""
try:
if tasks:
return self.model([tasks], *args, **kwargs)
else:
return self.model(task, *args, **kwargs)
except Exception as e:
raise ValueError(
f"Failed to perform task '{task}' with Ultralytics"
f" model: {str(e)}"
)

@ -1,237 +0,0 @@
import logging
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
class WizardLLMStoryTeller:
"""
A class for running inference on a given model.
Attributes:
model_id (str): The ID of the model.
device (str): The device to run the model on (either 'cuda' or 'cpu').
max_length (int): The maximum length of the output sequence.
quantize (bool, optional): Whether to use quantization. Defaults to False.
quantization_config (dict, optional): The configuration for quantization.
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
# Usage
```
from finetuning_suite import Inference
model_id = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGUF"
inference = Inference(model_id=model_id)
prompt_text = "Once upon a time"
generated_text = inference(prompt_text)
print(generated_text)
```
"""
def __init__(
self,
model_id: str = "TheBloke/WizardLM-Uncensored-SuperCOT-StoryTelling-30B-GGUF",
device: str = None,
max_length: int = 500,
quantize: bool = False,
quantization_config: dict = None,
verbose=False,
# logger=None,
distributed=False,
decoding=False,
):
self.logger = logging.getLogger(__name__)
self.device = (
device
if device
else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
# self.log = Logging()
if self.distributed:
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config
)
self.model # .to(self.device)
except Exception as e:
self.logger.error(
f"Failed to load the model or the tokenizer: {e}"
)
raise
def load_model(self):
"""Load the model"""
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id
)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
"Failed to load the model or the tokenizer:"
f" {error}"
)
raise
def run(self, prompt_text: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
inputs = self.tokenizer.encode(
prompt_text, return_tensors="pt"
).to(self.device)
# self.log.start()
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs,
max_length=len(inputs) + 1,
do_sample=True,
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode(
[output_tokens],
skip_special_tokens=True,
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(
outputs[0], skip_special_tokens=True
)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
def __call__(self, prompt_text: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_
try:
inputs = self.tokenizer.encode(
prompt_text, return_tensors="pt"
).to(self.device)
# self.log.start()
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs,
max_length=len(inputs) + 1,
do_sample=True,
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode(
[output_tokens],
skip_special_tokens=True,
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(
outputs[0], skip_special_tokens=True
)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise

@ -1,288 +0,0 @@
import logging
import torch
from torch.nn.parallel import DistributedDataParallel as DDP
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
BitsAndBytesConfig,
)
class YarnMistral128:
"""
A class for running inference on a given model.
Attributes:
model_id (str): The ID of the model.
device (str): The device to run the model on (either 'cuda' or 'cpu').
max_length (int): The maximum length of the output sequence.
quantize (bool, optional): Whether to use quantization. Defaults to False.
quantization_config (dict, optional): The configuration for quantization.
verbose (bool, optional): Whether to print verbose logs. Defaults to False.
logger (logging.Logger, optional): The logger to use. Defaults to a basic logger.
# Usage
```
from finetuning_suite import Inference
model_id = "NousResearch/Nous-Hermes-2-Vision-Alpha"
inference = Inference(model_id=model_id)
prompt_text = "Once upon a time"
generated_text = inference(prompt_text)
print(generated_text)
```
"""
def __init__(
self,
model_id: str = "NousResearch/Yarn-Mistral-7b-128k",
device: str = None,
max_length: int = 500,
quantize: bool = False,
quantization_config: dict = None,
verbose=False,
# logger=None,
distributed=False,
decoding=False,
):
self.logger = logging.getLogger(__name__)
self.device = (
device
if device
else ("cuda" if torch.cuda.is_available() else "cpu")
)
self.model_id = model_id
self.max_length = max_length
self.verbose = verbose
self.distributed = distributed
self.decoding = decoding
self.model, self.tokenizer = None, None
# self.log = Logging()
if self.distributed:
assert (
torch.cuda.device_count() > 1
), "You need more than 1 gpu for distributed processing"
bnb_config = None
if quantize:
if not quantization_config:
quantization_config = {
"load_in_4bit": True,
"bnb_4bit_use_double_quant": True,
"bnb_4bit_quant_type": "nf4",
"bnb_4bit_compute_dtype": torch.bfloat16,
}
bnb_config = BitsAndBytesConfig(**quantization_config)
try:
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
quantization_config=bnb_config,
use_flash_attention_2=True,
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True,
)
self.model # .to(self.device)
except Exception as e:
self.logger.error(
f"Failed to load the model or the tokenizer: {e}"
)
raise
def load_model(self):
"""Load the model"""
if not self.model or not self.tokenizer:
try:
self.tokenizer = AutoTokenizer.from_pretrained(
self.model_id
)
bnb_config = (
BitsAndBytesConfig(**self.quantization_config)
if self.quantization_config
else None
)
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id, quantization_config=bnb_config
).to(self.device)
if self.distributed:
self.model = DDP(self.model)
except Exception as error:
self.logger.error(
"Failed to load the model or the tokenizer:"
f" {error}"
)
raise
def run(self, prompt_text: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_length
try:
inputs = self.tokenizer.encode(
prompt_text, return_tensors="pt"
).to(self.device)
# self.log.start()
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs,
max_length=len(inputs) + 1,
do_sample=True,
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode(
[output_tokens],
skip_special_tokens=True,
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(
outputs[0], skip_special_tokens=True
)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def run_async(self, task: str, *args, **kwargs) -> str:
"""
Run the model asynchronously
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def __call__(self, prompt_text: str):
"""
Generate a response based on the prompt text.
Args:
- prompt_text (str): Text to prompt the model.
- max_length (int): Maximum length of the response.
Returns:
- Generated text (str).
"""
self.load_model()
max_length = self.max_
try:
inputs = self.tokenizer.encode(
prompt_text, return_tensors="pt"
).to(self.device)
# self.log.start()
if self.decoding:
with torch.no_grad():
for _ in range(max_length):
output_sequence = []
outputs = self.model.generate(
inputs,
max_length=len(inputs) + 1,
do_sample=True,
)
output_tokens = outputs[0][-1]
output_sequence.append(output_tokens.item())
# print token in real-time
print(
self.tokenizer.decode(
[output_tokens],
skip_special_tokens=True,
),
end="",
flush=True,
)
inputs = outputs
else:
with torch.no_grad():
outputs = self.model.generate(
inputs, max_length=max_length, do_sample=True
)
del inputs
return self.tokenizer.decode(
outputs[0], skip_special_tokens=True
)
except Exception as e:
self.logger.error(f"Failed to generate the text: {e}")
raise
async def __call_async__(self, task: str, *args, **kwargs) -> str:
"""Call the model asynchronously""" ""
return await self.run_async(task, *args, **kwargs)
def save_model(self, path: str):
"""Save the model to a given path"""
self.model.save_pretrained(path)
self.tokenizer.save_pretrained(path)
def gpu_available(self) -> bool:
"""Check if GPU is available"""
return torch.cuda.is_available()
def memory_consumption(self) -> dict:
"""Get the memory consumption of the GPU"""
if self.gpu_available():
torch.cuda.synchronize()
allocated = torch.cuda.memory_allocated()
reserved = torch.cuda.memory_reserved()
return {"allocated": allocated, "reserved": reserved}
else:
return {"error": "GPU not available"}

@ -1,97 +0,0 @@
from transformers import AutoModelForCausalLM, AutoTokenizer
class Yi34B200k:
"""
A class for eaasy interaction with Yi34B200k
Attributes:
-----------
model_id: str
The model id of the model to be used.
device_map: str
The device to be used for inference.
torch_dtype: str
The torch dtype to be used for inference.
max_length: int
The maximum length of the generated text.
repitition_penalty: float
The repitition penalty to be used for inference.
no_repeat_ngram_size: int
The no repeat ngram size to be used for inference.
temperature: float
The temperature to be used for inference.
Methods:
--------
__call__(self, task: str) -> str:
Generates text based on the given prompt.
"""
def __init__(
self,
model_id: str = "01-ai/Yi-34B-200K",
device_map: str = "auto",
torch_dtype: str = "auto",
max_length: int = 512,
repitition_penalty: float = 1.3,
no_repeat_ngram_size: int = 5,
temperature: float = 0.7,
top_k: int = 40,
top_p: float = 0.8,
):
super().__init__()
self.model_id = model_id
self.device_map = device_map
self.torch_dtype = torch_dtype
self.max_length = max_length
self.repitition_penalty = repitition_penalty
self.no_repeat_ngram_size = no_repeat_ngram_size
self.temperature = temperature
self.top_k = top_k
self.top_p = top_p
self.model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map=device_map,
torch_dtype=torch_dtype,
trust_remote_code=True,
)
self.tokenizer = AutoTokenizer.from_pretrained(
model_id,
trust_remote_code=True,
)
def __call__(self, task: str):
"""
Generates text based on the given prompt.
Args:
prompt (str): The input text prompt.
max_length (int): The maximum length of the generated text.
Returns:
str: The generated text.
"""
inputs = self.tokenizer(task, return_tensors="pt")
outputs = self.model.generate(
inputs.input_ids.cuda(),
max_length=self.max_length,
eos_token_id=self.tokenizer.eos_token_id,
do_sample=True,
repetition_penalty=self.repitition_penalty,
no_repeat_ngram_size=self.no_repeat_ngram_size,
temperature=self.temperature,
top_k=self.top_k,
top_p=self.top_p,
)
return self.tokenizer.decode(outputs[0], skip_special_tokens=True)
# # Example usage
# yi34b = Yi34B200k()
# prompt = "There's a place where time stands still. A place of breathtaking wonder, but also"
# generated_text = yi34b(prompt)
# print(generated_text)

@ -1,223 +0,0 @@
from unittest.mock import patch
# Import necessary modules
import pytest
import torch
from transformers import BioGptForCausalLM, BioGptTokenizer
# Fixture for BioGPT instance
@pytest.fixture
def biogpt_instance():
from swarms.models import BioGPT
return BioGPT()
# 36. Test if BioGPT provides a response for a simple biomedical question
def test_biomedical_response_1(biogpt_instance):
question = "What are the functions of the mitochondria?"
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 37. Test for a genetics-based question
def test_genetics_response(biogpt_instance):
question = "Can you explain the Mendelian inheritance?"
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 38. Test for a question about viruses
def test_virus_response(biogpt_instance):
question = "How do RNA viruses replicate?"
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 39. Test for a cell biology related question
def test_cell_biology_response(biogpt_instance):
question = "Describe the cell cycle and its phases."
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 40. Test for a question about protein structure
def test_protein_structure_response(biogpt_instance):
question = (
"What's the difference between alpha helix and beta sheet"
" structures in proteins?"
)
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 41. Test for a pharmacology question
def test_pharmacology_response(biogpt_instance):
question = "How do beta blockers work?"
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 42. Test for an anatomy-based question
def test_anatomy_response(biogpt_instance):
question = "Describe the structure of the human heart."
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 43. Test for a question about bioinformatics
def test_bioinformatics_response(biogpt_instance):
question = "What is a BLAST search?"
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 44. Test for a neuroscience question
def test_neuroscience_response(biogpt_instance):
question = "Explain the function of synapses in the nervous system."
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
# 45. Test for an immunology question
def test_immunology_response(biogpt_instance):
question = "What is the role of T cells in the immune response?"
response = biogpt_instance(question)
assert response
assert isinstance(response, str)
def test_init(bio_gpt):
assert bio_gpt.model_name == "microsoft/biogpt"
assert bio_gpt.max_length == 500
assert bio_gpt.num_return_sequences == 5
assert bio_gpt.do_sample is True
assert bio_gpt.min_length == 100
def test_call(bio_gpt, monkeypatch):
def mock_pipeline(*args, **kwargs):
class MockGenerator:
def __call__(self, text, **kwargs):
return ["Generated text"]
return MockGenerator()
monkeypatch.setattr("transformers.pipeline", mock_pipeline)
result = bio_gpt("Input text")
assert result == ["Generated text"]
def test_get_features(bio_gpt):
features = bio_gpt.get_features("Input text")
assert "last_hidden_state" in features
def test_beam_search_decoding(bio_gpt):
generated_text = bio_gpt.beam_search_decoding("Input text")
assert isinstance(generated_text, str)
def test_set_pretrained_model(bio_gpt):
bio_gpt.set_pretrained_model("new_model")
assert bio_gpt.model_name == "new_model"
def test_get_config(bio_gpt):
config = bio_gpt.get_config()
assert "vocab_size" in config
def test_save_load_model(tmp_path, bio_gpt):
bio_gpt.save_model(tmp_path)
bio_gpt.load_from_path(tmp_path)
assert bio_gpt.model_name == "microsoft/biogpt"
def test_print_model(capsys, bio_gpt):
bio_gpt.print_model()
captured = capsys.readouterr()
assert "BioGptForCausalLM" in captured.out
# 26. Test if set_pretrained_model changes the model_name
def test_set_pretrained_model_name_change(biogpt_instance):
biogpt_instance.set_pretrained_model("new_model_name")
assert biogpt_instance.model_name == "new_model_name"
# 27. Test get_config return type
def test_get_config_return_type(biogpt_instance):
config = biogpt_instance.get_config()
assert isinstance(config, type(biogpt_instance.model.config))
# 28. Test saving model functionality by checking if files are created
@patch.object(BioGptForCausalLM, "save_pretrained")
@patch.object(BioGptTokenizer, "save_pretrained")
def test_save_model(mock_save_model, mock_save_tokenizer, biogpt_instance):
path = "test_path"
biogpt_instance.save_model(path)
mock_save_model.assert_called_once_with(path)
mock_save_tokenizer.assert_called_once_with(path)
# 29. Test loading model from path
@patch.object(BioGptForCausalLM, "from_pretrained")
@patch.object(BioGptTokenizer, "from_pretrained")
def test_load_from_path(
mock_load_model, mock_load_tokenizer, biogpt_instance
):
path = "test_path"
biogpt_instance.load_from_path(path)
mock_load_model.assert_called_once_with(path)
mock_load_tokenizer.assert_called_once_with(path)
# 30. Test print_model doesn't raise any error
def test_print_model_metadata(biogpt_instance):
try:
biogpt_instance.print_model()
except Exception as e:
pytest.fail(f"print_model() raised an exception: {e}")
# 31. Test that beam_search_decoding uses the correct number of beams
@patch.object(BioGptForCausalLM, "generate")
def test_beam_search_decoding_num_beams(mock_generate, biogpt_instance):
biogpt_instance.beam_search_decoding("test_sentence", num_beams=7)
_, kwargs = mock_generate.call_args
assert kwargs["num_beams"] == 7
# 32. Test if beam_search_decoding handles early_stopping
@patch.object(BioGptForCausalLM, "generate")
def test_beam_search_decoding_early_stopping(
mock_generate, biogpt_instance
):
biogpt_instance.beam_search_decoding(
"test_sentence", early_stopping=False
)
_, kwargs = mock_generate.call_args
assert kwargs["early_stopping"] is False
# 33. Test get_features return type
def test_get_features_return_type(biogpt_instance):
result = biogpt_instance.get_features("This is a sample text.")
assert isinstance(result, torch.nn.modules.module.Module)
# 34. Test if default model is set correctly during initialization
def test_default_model_name(biogpt_instance):
assert biogpt_instance.model_name == "microsoft/biogpt"

@ -4,7 +4,7 @@ from unittest.mock import Mock, patch
import pytest import pytest
from dotenv import load_dotenv from dotenv import load_dotenv
from swarms.models.cohere_chat import BaseCohere, Cohere from swarms.models import BaseCohere, Cohere
# Load the environment variables # Load the environment variables
load_dotenv() load_dotenv()

@ -1,96 +0,0 @@
import os
from unittest.mock import mock_open, patch
import pytest
from dotenv import load_dotenv
from swarms.models.eleven_labs import (
ElevenLabsModel,
ElevenLabsText2SpeechTool,
)
load_dotenv()
# Define some test data
SAMPLE_TEXT = "Hello, this is a test."
API_KEY = os.environ.get("ELEVEN_API_KEY")
EXPECTED_SPEECH_FILE = "expected_speech.wav"
@pytest.fixture
def eleven_labs_tool():
return ElevenLabsText2SpeechTool()
# Basic functionality tests
def test_run_text_to_speech(eleven_labs_tool):
speech_file = eleven_labs_tool.run(SAMPLE_TEXT)
assert isinstance(speech_file, str)
assert speech_file.endswith(".wav")
def test_play_speech(eleven_labs_tool):
with patch("builtins.open", mock_open(read_data="fake_audio_data")):
eleven_labs_tool.play(EXPECTED_SPEECH_FILE)
def test_stream_speech(eleven_labs_tool):
with patch("tempfile.NamedTemporaryFile", mock_open()) as mock_file:
eleven_labs_tool.stream_speech(SAMPLE_TEXT)
mock_file.assert_called_with(
mode="bx", suffix=".wav", delete=False
)
# Testing fixture and environment variables
def test_api_key_validation(eleven_labs_tool):
with patch(
"langchain.utils.get_from_dict_or_env", return_value=API_KEY
):
values = {"eleven_api_key": None}
validated_values = eleven_labs_tool.validate_environment(values)
assert "eleven_api_key" in validated_values
# Mocking the external library
def test_run_text_to_speech_with_mock(eleven_labs_tool):
with patch(
"tempfile.NamedTemporaryFile", mock_open()
) as mock_file, patch(
"your_module._import_elevenlabs"
) as mock_elevenlabs:
mock_elevenlabs_instance = mock_elevenlabs.return_value
mock_elevenlabs_instance.generate.return_value = b"fake_audio_data"
eleven_labs_tool.run(SAMPLE_TEXT)
assert mock_file.call_args[1]["suffix"] == ".wav"
assert mock_file.call_args[1]["delete"] is False
assert mock_file().write.call_args[0][0] == b"fake_audio_data"
# Exception testing
def test_run_text_to_speech_error_handling(eleven_labs_tool):
with patch("your_module._import_elevenlabs") as mock_elevenlabs:
mock_elevenlabs_instance = mock_elevenlabs.return_value
mock_elevenlabs_instance.generate.side_effect = Exception(
"Test Exception"
)
with pytest.raises(
RuntimeError,
match=(
"Error while running ElevenLabsText2SpeechTool: Test"
" Exception"
),
):
eleven_labs_tool.run(SAMPLE_TEXT)
# Parameterized testing
@pytest.mark.parametrize(
"model",
[ElevenLabsModel.MULTI_LINGUAL, ElevenLabsModel.MONO_LINGUAL],
)
def test_run_text_to_speech_with_different_models(eleven_labs_tool, model):
eleven_labs_tool.model = model
speech_file = eleven_labs_tool.run(SAMPLE_TEXT)
assert isinstance(speech_file, str)
assert speech_file.endswith(".wav")

@ -1,177 +0,0 @@
import pytest
import requests
from swarms.models.gigabind import Gigabind
try:
import requests_mock
except ImportError:
requests_mock = None
@pytest.fixture
def api():
return Gigabind(host="localhost", port=8000, endpoint="embeddings")
@pytest.fixture
def mock(requests_mock):
requests_mock.post(
"http://localhost:8000/embeddings", json={"result": "success"}
)
return requests_mock
def test_run_with_text(api, mock):
response = api.run(text="Hello, world!")
assert response == {"result": "success"}
def test_run_with_vision(api, mock):
response = api.run(vision="image.jpg")
assert response == {"result": "success"}
def test_run_with_audio(api, mock):
response = api.run(audio="audio.mp3")
assert response == {"result": "success"}
def test_run_with_all(api, mock):
response = api.run(
text="Hello, world!", vision="image.jpg", audio="audio.mp3"
)
assert response == {"result": "success"}
def test_run_with_none(api):
with pytest.raises(ValueError):
api.run()
def test_generate_summary(api, mock):
response = api.generate_summary(text="Hello, world!")
assert response == {"result": "success"}
def test_generate_summary_with_none(api):
with pytest.raises(ValueError):
api.generate_summary()
def test_retry_on_failure(api, requests_mock):
requests_mock.post(
"http://localhost:8000/embeddings",
[
{"status_code": 500, "json": {}},
{"status_code": 500, "json": {}},
{"status_code": 200, "json": {"result": "success"}},
],
)
response = api.run(text="Hello, world!")
assert response == {"result": "success"}
def test_retry_exhausted(api, requests_mock):
requests_mock.post(
"http://localhost:8000/embeddings",
[
{"status_code": 500, "json": {}},
{"status_code": 500, "json": {}},
{"status_code": 500, "json": {}},
],
)
response = api.run(text="Hello, world!")
assert response is None
def test_proxy_url(api):
api.proxy_url = "http://proxy:8080"
assert api.url == "http://proxy:8080"
def test_invalid_response(api, requests_mock):
requests_mock.post("http://localhost:8000/embeddings", text="not json")
response = api.run(text="Hello, world!")
assert response is None
def test_connection_error(api, requests_mock):
requests_mock.post(
"http://localhost:8000/embeddings",
exc=requests.exceptions.ConnectTimeout,
)
response = api.run(text="Hello, world!")
assert response is None
def test_http_error(api, requests_mock):
requests_mock.post("http://localhost:8000/embeddings", status_code=500)
response = api.run(text="Hello, world!")
assert response is None
def test_url_construction(api):
assert api.url == "http://localhost:8000/embeddings"
def test_url_construction_with_proxy(api):
api.proxy_url = "http://proxy:8080"
assert api.url == "http://proxy:8080"
def test_run_with_large_text(api, mock):
large_text = "Hello, world! " * 10000 # 10,000 repetitions
response = api.run(text=large_text)
assert response == {"result": "success"}
def test_run_with_large_vision(api, mock):
large_vision = "image.jpg" * 10000 # 10,000 repetitions
response = api.run(vision=large_vision)
assert response == {"result": "success"}
def test_run_with_large_audio(api, mock):
large_audio = "audio.mp3" * 10000 # 10,000 repetitions
response = api.run(audio=large_audio)
assert response == {"result": "success"}
def test_run_with_large_all(api, mock):
large_text = "Hello, world! " * 10000 # 10,000 repetitions
large_vision = "image.jpg" * 10000 # 10,000 repetitions
large_audio = "audio.mp3" * 10000 # 10,000 repetitions
response = api.run(
text=large_text, vision=large_vision, audio=large_audio
)
assert response == {"result": "success"}
def test_run_with_timeout(api, mock):
response = api.run(text="Hello, world!", timeout=0.001)
assert response is None
def test_run_with_invalid_host(api):
api.host = "invalid"
response = api.run(text="Hello, world!")
assert response is None
def test_run_with_invalid_port(api):
api.port = 99999
response = api.run(text="Hello, world!")
assert response is None
def test_run_with_invalid_endpoint(api):
api.endpoint = "invalid"
response = api.run(text="Hello, world!")
assert response is None
def test_run_with_invalid_proxy_url(api):
api.proxy_url = "invalid"
response = api.run(text="Hello, world!")
assert response is None

@ -5,6 +5,243 @@ import pytest
import torch import torch
from swarms.models.huggingface import HuggingfaceLLM from swarms.models.huggingface import HuggingfaceLLM
from unittest.mock import patch
import pytest
import torch
from swarms.models.huggingface import (
HuggingfaceLLM, # Replace with the actual import path
)
# Fixture for the class instance
@pytest.fixture
def llm_instance():
model_id = "NousResearch/Nous-Hermes-2-Vision-Alpha"
instance = HuggingfaceLLM(model_id=model_id)
return instance
# Test for instantiation and attributes
def test_llm_initialization(llm_instance):
assert (
llm_instance.model_id == "NousResearch/Nous-Hermes-2-Vision-Alpha"
)
assert llm_instance.max_length == 500
# ... add more assertions for all default attributes
# Parameterized test for setting devices
@pytest.mark.parametrize("device", ["cpu", "cuda"])
def test_llm_set_device(llm_instance, device):
llm_instance.set_device(device)
assert llm_instance.device == device
# Test exception during initialization with a bad model_id
def test_llm_bad_model_initialization():
with pytest.raises(Exception):
HuggingfaceLLM(model_id="unknown-model")
# # Mocking the tokenizer and model to test run method
# @patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
# @patch(
# "swarms.models.huggingface.AutoModelForCausalLM.from_pretrained"
# )
# def test_llm_run(mock_model, mock_tokenizer, llm_instance):
# mock_model.return_value.generate.return_value = "mocked output"
# mock_tokenizer.return_value.encode.return_value = "mocked input"
# result = llm_instance.run("test task")
# assert result == "mocked output"
# Async test (requires pytest-asyncio plugin)
@pytest.mark.asyncio
async def test_llm_run_async(llm_instance):
result = await llm_instance.run_async("test task")
assert isinstance(result, str)
# Test for checking GPU availability
def test_llm_gpu_availability(llm_instance):
# Assuming the test is running on a machine where the GPU availability is known
expected_result = torch.cuda.is_available()
assert llm_instance.gpu_available() == expected_result
# Test for memory consumption reporting
def test_llm_memory_consumption(llm_instance):
# Mocking torch.cuda functions for consistent results
with patch("torch.cuda.memory_allocated", return_value=1024):
with patch("torch.cuda.memory_reserved", return_value=2048):
memory = llm_instance.memory_consumption()
assert memory == {"allocated": 1024, "reserved": 2048}
# Test different initialization parameters
@pytest.mark.parametrize(
"model_id, max_length",
[
("NousResearch/Nous-Hermes-2-Vision-Alpha", 100),
("microsoft/Orca-2-13b", 200),
(
"berkeley-nest/Starling-LM-7B-alpha",
None,
), # None to check default behavior
],
)
def test_llm_initialization_params(model_id, max_length):
if max_length:
instance = HuggingfaceLLM(model_id=model_id, max_length=max_length)
assert instance.max_length == max_length
else:
instance = HuggingfaceLLM(model_id=model_id)
assert (
instance.max_length == 500
) # Assuming 500 is the default max_length
# Test for setting an invalid device
def test_llm_set_invalid_device(llm_instance):
with pytest.raises(ValueError):
llm_instance.set_device("quantum_processor")
# Mocking external API call to test run method without network
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_without_network(mock_run, llm_instance):
mock_run.return_value = "mocked output"
result = llm_instance.run("test task without network")
assert result == "mocked output"
# Test handling of empty input for the run method
def test_llm_run_empty_input(llm_instance):
with pytest.raises(ValueError):
llm_instance.run("")
# Test the generation with a provided seed for reproducibility
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_with_seed(mock_run, llm_instance):
seed = 42
llm_instance.set_seed(seed)
# Assuming set_seed method affects the randomness in the model
# You would typically ensure that setting the seed gives reproducible results
mock_run.return_value = "mocked deterministic output"
result = llm_instance.run("test task", seed=seed)
assert result == "mocked deterministic output"
# Test the output length is as expected
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_output_length(mock_run, llm_instance):
input_text = "test task"
llm_instance.max_length = 50 # set a max_length for the output
mock_run.return_value = "mocked output" * 10 # some long text
result = llm_instance.run(input_text)
assert len(result.split()) <= llm_instance.max_length
# Test the tokenizer handling special tokens correctly
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.encode")
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.decode")
def test_llm_tokenizer_special_tokens(
mock_decode, mock_encode, llm_instance
):
mock_encode.return_value = "encoded input with special tokens"
mock_decode.return_value = "decoded output with special tokens"
result = llm_instance.run("test task with special tokens")
mock_encode.assert_called_once()
mock_decode.assert_called_once()
assert "special tokens" in result
# Test for correct handling of timeouts
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_timeout_handling(mock_run, llm_instance):
mock_run.side_effect = TimeoutError
with pytest.raises(TimeoutError):
llm_instance.run("test task with timeout")
# Test for response time within a threshold (performance test)
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_response_time(mock_run, llm_instance):
import time
mock_run.return_value = "mocked output"
start_time = time.time()
llm_instance.run("test task for response time")
end_time = time.time()
assert (
end_time - start_time < 1
) # Assuming the response should be faster than 1 second
# Test the logging of a warning for long inputs
@patch("swarms.models.huggingface.logging.warning")
def test_llm_long_input_warning(mock_warning, llm_instance):
long_input = "x" * 10000 # input longer than the typical limit
llm_instance.run(long_input)
mock_warning.assert_called_once()
# Test for run method behavior when model raises an exception
@patch(
"swarms.models.huggingface.HuggingfaceLLM._model.generate",
side_effect=RuntimeError,
)
def test_llm_run_model_exception(mock_generate, llm_instance):
with pytest.raises(RuntimeError):
llm_instance.run("test task when model fails")
# Test the behavior when GPU is forced but not available
@patch("torch.cuda.is_available", return_value=False)
def test_llm_force_gpu_when_unavailable(mock_is_available, llm_instance):
with pytest.raises(EnvironmentError):
llm_instance.set_device(
"cuda"
) # Attempt to set CUDA when it's not available
# Test for proper cleanup after model use (releasing resources)
@patch("swarms.models.huggingface.HuggingfaceLLM._model")
def test_llm_cleanup(mock_model, mock_tokenizer, llm_instance):
llm_instance.cleanup()
# Assuming cleanup method is meant to free resources
mock_model.delete.assert_called_once()
mock_tokenizer.delete.assert_called_once()
# Test model's ability to handle multilingual input
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_multilingual_input(mock_run, llm_instance):
mock_run.return_value = "mocked multilingual output"
multilingual_input = "Bonjour, ceci est un test multilingue."
result = llm_instance.run(multilingual_input)
assert isinstance(
result, str
) # Simple check to ensure output is string type
# Test caching mechanism to prevent re-running the same inputs
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_caching_mechanism(mock_run, llm_instance):
input_text = "test caching mechanism"
mock_run.return_value = "cached output"
# Run the input twice
first_run_result = llm_instance.run(input_text)
second_run_result = llm_instance.run(input_text)
mock_run.assert_called_once() # Should only be called once due to caching
assert first_run_result == second_run_result
# These tests are provided as examples. In real-world scenarios, you will need to adapt these tests to the actual logic of your `HuggingfaceLLM` class.
# For instance, "mock_model.delete.assert_called_once()" and similar lines are based on hypothetical methods and behaviors that you need to replace with actual implementations.
# Mock some functions and objects for testing # Mock some functions and objects for testing

@ -1,237 +0,0 @@
from unittest.mock import patch
import pytest
import torch
from swarms.models.huggingface import (
HuggingfaceLLM, # Replace with the actual import path
)
# Fixture for the class instance
@pytest.fixture
def llm_instance():
model_id = "NousResearch/Nous-Hermes-2-Vision-Alpha"
instance = HuggingfaceLLM(model_id=model_id)
return instance
# Test for instantiation and attributes
def test_llm_initialization(llm_instance):
assert (
llm_instance.model_id == "NousResearch/Nous-Hermes-2-Vision-Alpha"
)
assert llm_instance.max_length == 500
# ... add more assertions for all default attributes
# Parameterized test for setting devices
@pytest.mark.parametrize("device", ["cpu", "cuda"])
def test_llm_set_device(llm_instance, device):
llm_instance.set_device(device)
assert llm_instance.device == device
# Test exception during initialization with a bad model_id
def test_llm_bad_model_initialization():
with pytest.raises(Exception):
HuggingfaceLLM(model_id="unknown-model")
# # Mocking the tokenizer and model to test run method
# @patch("swarms.models.huggingface.AutoTokenizer.from_pretrained")
# @patch(
# "swarms.models.huggingface.AutoModelForCausalLM.from_pretrained"
# )
# def test_llm_run(mock_model, mock_tokenizer, llm_instance):
# mock_model.return_value.generate.return_value = "mocked output"
# mock_tokenizer.return_value.encode.return_value = "mocked input"
# result = llm_instance.run("test task")
# assert result == "mocked output"
# Async test (requires pytest-asyncio plugin)
@pytest.mark.asyncio
async def test_llm_run_async(llm_instance):
result = await llm_instance.run_async("test task")
assert isinstance(result, str)
# Test for checking GPU availability
def test_llm_gpu_availability(llm_instance):
# Assuming the test is running on a machine where the GPU availability is known
expected_result = torch.cuda.is_available()
assert llm_instance.gpu_available() == expected_result
# Test for memory consumption reporting
def test_llm_memory_consumption(llm_instance):
# Mocking torch.cuda functions for consistent results
with patch("torch.cuda.memory_allocated", return_value=1024):
with patch("torch.cuda.memory_reserved", return_value=2048):
memory = llm_instance.memory_consumption()
assert memory == {"allocated": 1024, "reserved": 2048}
# Test different initialization parameters
@pytest.mark.parametrize(
"model_id, max_length",
[
("NousResearch/Nous-Hermes-2-Vision-Alpha", 100),
("microsoft/Orca-2-13b", 200),
(
"berkeley-nest/Starling-LM-7B-alpha",
None,
), # None to check default behavior
],
)
def test_llm_initialization_params(model_id, max_length):
if max_length:
instance = HuggingfaceLLM(model_id=model_id, max_length=max_length)
assert instance.max_length == max_length
else:
instance = HuggingfaceLLM(model_id=model_id)
assert (
instance.max_length == 500
) # Assuming 500 is the default max_length
# Test for setting an invalid device
def test_llm_set_invalid_device(llm_instance):
with pytest.raises(ValueError):
llm_instance.set_device("quantum_processor")
# Mocking external API call to test run method without network
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_without_network(mock_run, llm_instance):
mock_run.return_value = "mocked output"
result = llm_instance.run("test task without network")
assert result == "mocked output"
# Test handling of empty input for the run method
def test_llm_run_empty_input(llm_instance):
with pytest.raises(ValueError):
llm_instance.run("")
# Test the generation with a provided seed for reproducibility
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_with_seed(mock_run, llm_instance):
seed = 42
llm_instance.set_seed(seed)
# Assuming set_seed method affects the randomness in the model
# You would typically ensure that setting the seed gives reproducible results
mock_run.return_value = "mocked deterministic output"
result = llm_instance.run("test task", seed=seed)
assert result == "mocked deterministic output"
# Test the output length is as expected
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_run_output_length(mock_run, llm_instance):
input_text = "test task"
llm_instance.max_length = 50 # set a max_length for the output
mock_run.return_value = "mocked output" * 10 # some long text
result = llm_instance.run(input_text)
assert len(result.split()) <= llm_instance.max_length
# Test the tokenizer handling special tokens correctly
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.encode")
@patch("swarms.models.huggingface.HuggingfaceLLM._tokenizer.decode")
def test_llm_tokenizer_special_tokens(
mock_decode, mock_encode, llm_instance
):
mock_encode.return_value = "encoded input with special tokens"
mock_decode.return_value = "decoded output with special tokens"
result = llm_instance.run("test task with special tokens")
mock_encode.assert_called_once()
mock_decode.assert_called_once()
assert "special tokens" in result
# Test for correct handling of timeouts
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_timeout_handling(mock_run, llm_instance):
mock_run.side_effect = TimeoutError
with pytest.raises(TimeoutError):
llm_instance.run("test task with timeout")
# Test for response time within a threshold (performance test)
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_response_time(mock_run, llm_instance):
import time
mock_run.return_value = "mocked output"
start_time = time.time()
llm_instance.run("test task for response time")
end_time = time.time()
assert (
end_time - start_time < 1
) # Assuming the response should be faster than 1 second
# Test the logging of a warning for long inputs
@patch("swarms.models.huggingface.logging.warning")
def test_llm_long_input_warning(mock_warning, llm_instance):
long_input = "x" * 10000 # input longer than the typical limit
llm_instance.run(long_input)
mock_warning.assert_called_once()
# Test for run method behavior when model raises an exception
@patch(
"swarms.models.huggingface.HuggingfaceLLM._model.generate",
side_effect=RuntimeError,
)
def test_llm_run_model_exception(mock_generate, llm_instance):
with pytest.raises(RuntimeError):
llm_instance.run("test task when model fails")
# Test the behavior when GPU is forced but not available
@patch("torch.cuda.is_available", return_value=False)
def test_llm_force_gpu_when_unavailable(mock_is_available, llm_instance):
with pytest.raises(EnvironmentError):
llm_instance.set_device(
"cuda"
) # Attempt to set CUDA when it's not available
# Test for proper cleanup after model use (releasing resources)
@patch("swarms.models.huggingface.HuggingfaceLLM._model")
def test_llm_cleanup(mock_model, mock_tokenizer, llm_instance):
llm_instance.cleanup()
# Assuming cleanup method is meant to free resources
mock_model.delete.assert_called_once()
mock_tokenizer.delete.assert_called_once()
# Test model's ability to handle multilingual input
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_multilingual_input(mock_run, llm_instance):
mock_run.return_value = "mocked multilingual output"
multilingual_input = "Bonjour, ceci est un test multilingue."
result = llm_instance.run(multilingual_input)
assert isinstance(
result, str
) # Simple check to ensure output is string type
# Test caching mechanism to prevent re-running the same inputs
@patch("swarms.models.huggingface.HuggingfaceLLM.run")
def test_llm_caching_mechanism(mock_run, llm_instance):
input_text = "test caching mechanism"
mock_run.return_value = "cached output"
# Run the input twice
first_run_result = llm_instance.run(input_text)
second_run_result = llm_instance.run(input_text)
mock_run.assert_called_once() # Should only be called once due to caching
assert first_run_result == second_run_result
# These tests are provided as examples. In real-world scenarios, you will need to adapt these tests to the actual logic of your `HuggingfaceLLM` class.
# For instance, "mock_model.delete.assert_called_once()" and similar lines are based on hypothetical methods and behaviors that you need to replace with actual implementations.

@ -1,84 +0,0 @@
import pytest
import torch
from swarms.models.jina_embeds import JinaEmbeddings
@pytest.fixture
def model():
return JinaEmbeddings("bert-base-uncased", verbose=True)
def test_initialization(model):
assert isinstance(model, JinaEmbeddings)
assert model.device in ["cuda", "cpu"]
assert model.max_length == 500
assert model.verbose is True
def test_run_sync(model):
task = "Encode this text"
result = model.run(task)
assert isinstance(result, torch.Tensor)
assert result.shape == (model.max_length,)
def test_run_async(model):
task = "Encode this text"
result = model.run_async(task)
assert isinstance(result, torch.Tensor)
assert result.shape == (model.max_length,)
def test_save_model(tmp_path, model):
model_path = tmp_path / "model"
model.save_model(model_path)
assert (model_path / "config.json").is_file()
assert (model_path / "pytorch_model.bin").is_file()
assert (model_path / "vocab.txt").is_file()
def test_gpu_available(model):
gpu_status = model.gpu_available()
if torch.cuda.is_available():
assert gpu_status is True
else:
assert gpu_status is False
def test_memory_consumption(model):
memory_stats = model.memory_consumption()
if torch.cuda.is_available():
assert "allocated" in memory_stats
assert "reserved" in memory_stats
else:
assert "error" in memory_stats
def test_cosine_similarity(model):
task1 = "This is a sample text for testing."
task2 = "Another sample text for testing."
embeddings1 = model.run(task1)
embeddings2 = model.run(task2)
sim = model.cos_sim(embeddings1, embeddings2)
assert isinstance(sim, torch.Tensor)
assert sim.item() >= -1.0
assert sim.item() <= 1.0
def test_failed_load_model(caplog):
with pytest.raises(Exception):
JinaEmbeddings("invalid_model")
assert "Failed to load the model or the tokenizer" in caplog.text
def test_failed_generate_text(caplog, model):
with pytest.raises(Exception):
model.run("invalid_task")
assert "Failed to generate the text" in caplog.text
@pytest.mark.parametrize("device", ["cuda", "cpu"])
def test_change_device(model, device):
model.device = device
assert model.device == device

@ -1,43 +0,0 @@
from unittest.mock import patch
import torch
from swarms.models import TimmModel
def test_timm_model_init():
with patch("swarms.models.timm.list_models") as mock_list_models:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
mock_list_models.assert_called_once()
assert timm_model.model_name == model_name
assert timm_model.pretrained == pretrained
assert timm_model.in_chans == in_chans
assert timm_model.models == mock_list_models.return_value
def test_timm_model_call():
with patch("swarms.models.timm.create_model") as mock_create_model:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
task = torch.rand(1, in_chans, 224, 224)
result = timm_model(task)
mock_create_model.assert_called_once_with(
model_name, pretrained=pretrained, in_chans=in_chans
)
assert result == mock_create_model.return_value(task)
def test_timm_model_list_models():
with patch("swarms.models.timm.list_models") as mock_list_models:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
result = timm_model.list_models()
mock_list_models.assert_called_once()
assert result == mock_list_models.return_value

@ -1,9 +1,47 @@
from unittest.mock import Mock from unittest.mock import Mock, patch
import pytest import pytest
import torch import torch
from swarms.models.timm import TimmModel from swarms.models import TimmModel
def test_timm_model_init():
with patch("swarms.models.timm.list_models") as mock_list_models:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
mock_list_models.assert_called_once()
assert timm_model.model_name == model_name
assert timm_model.pretrained == pretrained
assert timm_model.in_chans == in_chans
assert timm_model.models == mock_list_models.return_value
def test_timm_model_call():
with patch("swarms.models.timm.create_model") as mock_create_model:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
task = torch.rand(1, in_chans, 224, 224)
result = timm_model(task)
mock_create_model.assert_called_once_with(
model_name, pretrained=pretrained, in_chans=in_chans
)
assert result == mock_create_model.return_value(task)
def test_timm_model_list_models():
with patch("swarms.models.timm.list_models") as mock_list_models:
model_name = "resnet18"
pretrained = True
in_chans = 3
timm_model = TimmModel(model_name, pretrained, in_chans)
result = timm_model.list_models()
mock_list_models.assert_called_once()
assert result == mock_list_models.return_value
def test_get_supported_models(): def test_get_supported_models():

@ -1,35 +0,0 @@
from unittest.mock import patch
from swarms.models.ultralytics_model import UltralyticsModel
def test_ultralytics_init():
with patch("swarms.models.YOLO") as mock_yolo:
model_name = "yolov5s"
ultralytics = UltralyticsModel(model_name)
mock_yolo.assert_called_once_with(model_name)
assert ultralytics.model_name == model_name
assert ultralytics.model == mock_yolo.return_value
def test_ultralytics_call():
with patch("swarms.models.YOLO") as mock_yolo:
model_name = "yolov5s"
ultralytics = UltralyticsModel(model_name)
task = "detect"
args = (1, 2, 3)
kwargs = {"a": "A", "b": "B"}
result = ultralytics(task, *args, **kwargs)
mock_yolo.return_value.assert_called_once_with(
task, *args, **kwargs
)
assert result == mock_yolo.return_value.return_value
def test_ultralytics_list_models():
with patch("swarms.models.YOLO") as mock_yolo:
model_name = "yolov5s"
ultralytics = UltralyticsModel(model_name)
result = ultralytics.list_models()
mock_yolo.list_models.assert_called_once()
assert result == mock_yolo.list_models.return_value

@ -1,126 +0,0 @@
import pytest
import torch
from transformers import AutoTokenizer
from swarms.models.yi_200k import Yi34B200k
# Create fixtures if needed
@pytest.fixture
def yi34b_model():
return Yi34B200k()
# Test cases for the Yi34B200k class
def test_yi34b_init(yi34b_model):
assert isinstance(yi34b_model.model, torch.nn.Module)
assert isinstance(yi34b_model.tokenizer, AutoTokenizer)
def test_yi34b_generate_text(yi34b_model):
prompt = "There's a place where time stands still."
generated_text = yi34b_model(prompt)
assert isinstance(generated_text, str)
assert len(generated_text) > 0
@pytest.mark.parametrize("max_length", [64, 128, 256, 512])
def test_yi34b_generate_text_with_length(yi34b_model, max_length):
prompt = "There's a place where time stands still."
generated_text = yi34b_model(prompt, max_length=max_length)
assert len(generated_text) <= max_length
@pytest.mark.parametrize("temperature", [0.5, 1.0, 1.5])
def test_yi34b_generate_text_with_temperature(yi34b_model, temperature):
prompt = "There's a place where time stands still."
generated_text = yi34b_model(prompt, temperature=temperature)
assert isinstance(generated_text, str)
def test_yi34b_generate_text_with_invalid_prompt(yi34b_model):
prompt = None # Invalid prompt
with pytest.raises(
ValueError, match="Input prompt must be a non-empty string"
):
yi34b_model(prompt)
def test_yi34b_generate_text_with_invalid_max_length(yi34b_model):
prompt = "There's a place where time stands still."
max_length = -1 # Invalid max_length
with pytest.raises(
ValueError, match="max_length must be a positive integer"
):
yi34b_model(prompt, max_length=max_length)
def test_yi34b_generate_text_with_invalid_temperature(yi34b_model):
prompt = "There's a place where time stands still."
temperature = 2.0 # Invalid temperature
with pytest.raises(
ValueError, match="temperature must be between 0.01 and 1.0"
):
yi34b_model(prompt, temperature=temperature)
@pytest.mark.parametrize("top_k", [20, 30, 50])
def test_yi34b_generate_text_with_top_k(yi34b_model, top_k):
prompt = "There's a place where time stands still."
generated_text = yi34b_model(prompt, top_k=top_k)
assert isinstance(generated_text, str)
@pytest.mark.parametrize("top_p", [0.5, 0.7, 0.9])
def test_yi34b_generate_text_with_top_p(yi34b_model, top_p):
prompt = "There's a place where time stands still."
generated_text = yi34b_model(prompt, top_p=top_p)
assert isinstance(generated_text, str)
def test_yi34b_generate_text_with_invalid_top_k(yi34b_model):
prompt = "There's a place where time stands still."
top_k = -1 # Invalid top_k
with pytest.raises(
ValueError, match="top_k must be a non-negative integer"
):
yi34b_model(prompt, top_k=top_k)
def test_yi34b_generate_text_with_invalid_top_p(yi34b_model):
prompt = "There's a place where time stands still."
top_p = 1.5 # Invalid top_p
with pytest.raises(
ValueError, match="top_p must be between 0.0 and 1.0"
):
yi34b_model(prompt, top_p=top_p)
@pytest.mark.parametrize("repitition_penalty", [1.0, 1.2, 1.5])
def test_yi34b_generate_text_with_repitition_penalty(
yi34b_model, repitition_penalty
):
prompt = "There's a place where time stands still."
generated_text = yi34b_model(
prompt, repitition_penalty=repitition_penalty
)
assert isinstance(generated_text, str)
def test_yi34b_generate_text_with_invalid_repitition_penalty(
yi34b_model,
):
prompt = "There's a place where time stands still."
repitition_penalty = 0.0 # Invalid repitition_penalty
with pytest.raises(
ValueError,
match="repitition_penalty must be a positive float",
):
yi34b_model(prompt, repitition_penalty=repitition_penalty)
def test_yi34b_generate_text_with_invalid_device(yi34b_model):
prompt = "There's a place where time stands still."
device_map = "invalid_device" # Invalid device_map
with pytest.raises(ValueError, match="Invalid device_map"):
yi34b_model(prompt, device_map=device_map)
Loading…
Cancel
Save