[FEAT][Conversation]

pull/328/head
Kye 1 year ago
parent 51a271172f
commit 300f26880e

@ -0,0 +1,132 @@
# Conversation Module Documentation
## Table of Contents
1. [Introduction](#introduction)
2. [Installation](#installation)
3. [Class: Conversation](#class-conversation)
- [Attributes](#attributes)
- [Methods](#methods)
4. [Usage Examples](#usage-examples)
- [Example 1: Creating a Conversation](#example-1-creating-a-conversation)
- [Example 2: Adding Messages](#example-2-adding-messages)
- [Example 3: Displaying and Exporting Conversation](#example-3-displaying-and-exporting-conversation)
- [Example 4: Counting Messages by Role](#example-4-counting-messages-by-role)
- [Example 5: Loading and Searching](#example-5-loading-and-searching)
5. [Additional Information](#additional-information)
6. [References](#references)
---
## 1. Introduction <a name="introduction"></a>
The Conversation module provides a versatile and extensible structure for managing and analyzing text-based conversations. Whether you're developing a chatbot, analyzing customer support interactions, or conducting research on dialogues, this module simplifies the process of handling conversation data.
With the Conversation module, you can add, delete, update, query, and search for messages within a conversation. You can also display, export, and import conversation history, making it an essential tool for various applications.
## 2. Installation <a name="installation"></a>
To use the Conversation module, you need to have Python installed on your system. Additionally, you can install the required dependencies using pip:
```bash
pip install termcolor
```
Once you have the dependencies installed, you can import the Conversation module into your Python code.
```python
from swarms.structs.conversation import Conversation
```
## 3. Class: Conversation <a name="class-conversation"></a>
The Conversation class is the core of this module. It allows you to create and manipulate conversation histories. Below are the attributes and methods provided by this class.
### Attributes <a name="attributes"></a>
- `time_enabled` (bool): Indicates whether timestamps are enabled for messages in the conversation.
- `conversation_history` (list): A list that stores the conversation history as a collection of messages.
### Methods <a name="methods"></a>
The Conversation class provides the following methods:
- `add(role: str, content: str, *args, **kwargs)`: Adds a message to the conversation history.
- `delete(index: str)`: Deletes a message from the conversation history.
- `update(index: str, role, content)`: Updates a message in the conversation history.
- `query(index: str)`: Queries a message in the conversation history.
- `search(keyword: str)`: Searches for messages containing a specific keyword.
- `display_conversation(detailed: bool = False)`: Displays the conversation history.
- `export_conversation(filename: str)`: Exports the conversation history to a file.
- `import_conversation(filename: str)`: Imports a conversation history from a file.
- `count_messages_by_role()`: Counts the number of messages by role.
- `return_history_as_string()`: Returns the conversation history as a string.
- `save_as_json(filename: str)`: Saves the conversation history as a JSON file.
- `load_from_json(filename: str)`: Loads the conversation history from a JSON file.
- `search_keyword_in_conversation(keyword: str)`: Searches for a keyword in the conversation history.
- `pretty_print_conversation(messages)`: Pretty prints the conversation history.
## 4. Usage Examples <a name="usage-examples"></a>
In this section, we'll provide practical examples of how to use the Conversation module to manage and analyze conversation data.
### Example 1: Creating a Conversation <a name="example-1-creating-a-conversation"></a>
Let's start by creating a Conversation object and enabling timestamps for messages:
```python
conversation = Conversation(time_enabled=True)
```
### Example 2: Adding Messages <a name="example-2-adding-messages"></a>
You can add messages to the conversation using the `add` method. Here's how to add a user message and an assistant response:
```python
conversation.add("user", "Hello, how can I help you?")
conversation.add("assistant", "Hi there! I'm here to assist you.")
```
### Example 3: Displaying and Exporting Conversation <a name="example-3-displaying-and-exporting-conversation"></a>
You can display the conversation history and export it to a file. Let's see how to do this:
```python
# Display the conversation
conversation.display_conversation()
# Export the conversation to a file
conversation.export_conversation("conversation_history.txt")
```
### Example 4: Counting Messages by Role <a name="example-4-counting-messages-by-role"></a>
You can count the number of messages by role (e.g., user, assistant, system) using the `count_messages_by_role` method:
```python
message_counts = conversation.count_messages_by_role()
print(message_counts)
```
### Example 5: Loading and Searching <a name="example-5-loading-and-searching"></a>
You can load a conversation from a file and search for messages containing a specific keyword:
```python
# Load conversation from a file
conversation.load_from_json("saved_conversation.json")
# Search for messages containing the keyword "help"
results = conversation.search("help")
print(results)
```
## 5. Additional Information <a name="additional-information"></a>
- The Conversation module is designed to provide flexibility and ease of use for managing and analyzing text-based conversations.
- You can extend the module by adding custom functionality or integrating it into your chatbot or natural language processing applications.
## 6. References <a name="references"></a>
For more information on the Conversation module and its usage, refer to the official documentation and examples.

@ -103,6 +103,7 @@ nav:
- AutoScaler: "swarms/swarms/autoscaler.md" - AutoScaler: "swarms/swarms/autoscaler.md"
- Agent: "swarms/structs/agent.md" - Agent: "swarms/structs/agent.md"
- SequentialWorkflow: 'swarms/structs/sequential_workflow.md' - SequentialWorkflow: 'swarms/structs/sequential_workflow.md'
- Conversation: "swarms/structs/conversation.md"
- swarms.memory: - swarms.memory:
- Weaviate: "swarms/memory/weaviate.md" - Weaviate: "swarms/memory/weaviate.md"
- PineconDB: "swarms/memory/pinecone.md" - PineconDB: "swarms/memory/pinecone.md"

@ -234,10 +234,10 @@ class OpenAIFunctionCaller:
) )
) )
def call(self, prompt: str) -> Dict: def call(self, task: str, *args, **kwargs) -> Dict:
response = openai.Completion.create( return openai.Completion.create(
engine=self.model, engine=self.model,
prompt=prompt, prompt=task,
max_tokens=self.max_tokens, max_tokens=self.max_tokens,
temperature=self.temperature, temperature=self.temperature,
top_p=self.top_p, top_p=self.top_p,
@ -253,9 +253,10 @@ class OpenAIFunctionCaller:
user=self.user, user=self.user,
messages=self.messages, messages=self.messages,
timeout_sec=self.timeout_sec, timeout_sec=self.timeout_sec,
*args,
**kwargs,
) )
return response
def run(self, prompt: str) -> str: def run(self, task: str, *args, **kwargs) -> str:
response = self.call(prompt) response = self.call(task, *args, **kwargs)
return response["choices"][0]["text"].strip() return response["choices"][0]["text"].strip()

@ -1,5 +1,6 @@
from swarms.structs.agent import Agent from swarms.structs.agent import Agent
from swarms.structs.sequential_workflow import SequentialWorkflow from swarms.structs.sequential_workflow import SequentialWorkflow
from swarms.structs.autoscaler import AutoScaler from swarms.structs.autoscaler import AutoScaler
from swarms.structs.conversation import Conversation
__all__ = ["Agent", "SequentialWorkflow", "AutoScaler"] __all__ = ["Agent", "SequentialWorkflow", "AutoScaler", "Conversation"]

@ -0,0 +1,242 @@
import json
import datetime
from termcolor import colored
from swarms.structs.base import BaseStructure
class Conversation(BaseStructure):
def __init__(self, time_enabled: bool = False, *args, **kwargs):
super().__init__()
self.time_enabled = time_enabled
self.conversation_history = []
def add(self, role: str, content: str, *args, **kwargs):
"""Add a message to the conversation history
Args:
role (str): The role of the speaker
content (str): The content of the message
"""
if self.time_enabled:
now = datetime.datetime.now()
timestamp = now.strftime("%Y-%m-%d %H:%M:%S")
message = {
"role": role,
"content": content,
"timestamp": timestamp,
}
else:
message = {
"role": role,
"content": content,
}
self.conversation_history.append(message)
def delete(self, index: str):
"""Delete a message from the conversation history
Args:
index (str): index of the message to delete
"""
self.conversation_history.pop(index)
def update(self, index: str, role, content):
"""Update a message in the conversation history
Args:
index (str): index of the message to update
role (_type_): role of the speaker
content (_type_): content of the message
"""
self.conversation_history[index] = {
"role": role,
"content": content,
}
def query(self, index: str):
"""Query a message in the conversation history
Args:
index (str): index of the message to query
Returns:
str: the message
"""
return self.conversation_history[index]
def search(self, keyword: str):
"""Search for a message in the conversation history
Args:
keyword (str): Keyword to search for
Returns:
str: description
"""
return [
msg
for msg in self.conversation_history
if keyword in msg["content"]
]
def display_conversation(self, detailed: bool = False):
"""Display the conversation history
Args:
detailed (bool, optional): detailed. Defaults to False.
"""
role_to_color = {
"system": "red",
"user": "green",
"assistant": "blue",
"function": "magenta",
}
for message in self.conversation_history:
print(
colored(
f"{message['role']}: {message['content']}\n\n",
role_to_color[message["role"]],
)
)
def export_conversation(self, filename: str):
"""Export the conversation history to a file
Args:
filename (str): filename to export to
"""
with open(filename, "w") as f:
for message in self.conversation_history:
f.write(f"{message['role']}: {message['content']}\n")
def import_conversation(self, filename: str):
"""Import a conversation history from a file
Args:
filename (str): filename to import from
"""
with open(filename, "r") as f:
for line in f:
role, content = line.split(": ", 1)
self.add(role, content.strip())
def count_messages_by_role(self):
"""Count the number of messages by role"""
counts = {
"system": 0,
"user": 0,
"assistant": 0,
"function": 0,
}
for message in self.conversation_history:
counts[message["role"]] += 1
return counts
def return_history_as_string(self):
"""Return the conversation history as a string
Returns:
str: the conversation history
"""
return "\n".join(
[
f"{message['role']}: {message['content']}\n\n"
for message in self.conversation_history
]
)
def save_as_json(self, filename: str):
"""Save the conversation history as a JSON file
Args:
filename (str): Save the conversation history as a JSON file
"""
# Save the conversation history as a JSON file
with open(filename, "w") as f:
json.dump(self.conversation_history, f)
def load_from_json(self, filename: str):
"""Load the conversation history from a JSON file
Args:
filename (str): filename to load from
"""
# Load the conversation history from a JSON file
with open(filename, "r") as f:
self.conversation_history = json.load(f)
def search_keyword_in_conversation(self, keyword: str):
"""Search for a keyword in the conversation history
Args:
keyword (str): keyword to search for
Returns:
str: description
"""
return [
msg
for msg in self.conversation_history
if keyword in msg["content"]
]
def pretty_print_conversation(self, messages):
"""Pretty print the conversation history
Args:
messages (str): messages to print
"""
role_to_color = {
"system": "red",
"user": "green",
"assistant": "blue",
"tool": "magenta",
}
for message in messages:
if message["role"] == "system":
print(
colored(
f"system: {message['content']}\n",
role_to_color[message["role"]],
)
)
elif message["role"] == "user":
print(
colored(
f"user: {message['content']}\n",
role_to_color[message["role"]],
)
)
elif message["role"] == "assistant" and message.get(
"function_call"
):
print(
colored(
f"assistant: {message['function_call']}\n",
role_to_color[message["role"]],
)
)
elif message["role"] == "assistant" and not message.get(
"function_call"
):
print(
colored(
f"assistant: {message['content']}\n",
role_to_color[message["role"]],
)
)
elif message["role"] == "tool":
print(
colored(
(
f"function ({message['name']}):"
f" {message['content']}\n"
),
role_to_color[message["role"]],
)
)

@ -0,0 +1,241 @@
import pytest
from swarms.structs.conversation import Conversation
@pytest.fixture
def conversation():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
return conv
def test_add_message():
conv = Conversation()
conv.add("user", "Hello, world!")
assert len(conv.conversation_history) == 1
assert conv.conversation_history[0]["role"] == "user"
assert conv.conversation_history[0]["content"] == "Hello, world!"
def test_add_message_with_time():
conv = Conversation(time_enabled=True)
conv.add("user", "Hello, world!")
assert len(conv.conversation_history) == 1
assert conv.conversation_history[0]["role"] == "user"
assert conv.conversation_history[0]["content"] == "Hello, world!"
assert "timestamp" in conv.conversation_history[0]
def test_delete_message():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.delete(0)
assert len(conv.conversation_history) == 0
def test_delete_message_out_of_bounds():
conv = Conversation()
conv.add("user", "Hello, world!")
with pytest.raises(IndexError):
conv.delete(1)
def test_update_message():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.update(0, "assistant", "Hello, user!")
assert len(conv.conversation_history) == 1
assert conv.conversation_history[0]["role"] == "assistant"
assert conv.conversation_history[0]["content"] == "Hello, user!"
def test_update_message_out_of_bounds():
conv = Conversation()
conv.add("user", "Hello, world!")
with pytest.raises(IndexError):
conv.update(1, "assistant", "Hello, user!")
def test_return_history_as_string_with_messages(conversation):
result = conversation.return_history_as_string()
assert result is not None
def test_return_history_as_string_with_no_messages():
conv = Conversation()
result = conv.return_history_as_string()
assert result == ""
@pytest.mark.parametrize(
"role, content",
[
("user", "Hello, world!"),
("assistant", "Hello, user!"),
("system", "System message"),
("function", "Function message"),
],
)
def test_return_history_as_string_with_different_roles(role, content):
conv = Conversation()
conv.add(role, content)
result = conv.return_history_as_string()
expected = f"{role}: {content}\n\n"
assert result == expected
@pytest.mark.parametrize("message_count", range(1, 11))
def test_return_history_as_string_with_multiple_messages(
message_count,
):
conv = Conversation()
for i in range(message_count):
conv.add("user", f"Message {i + 1}")
result = conv.return_history_as_string()
expected = "".join(
[f"user: Message {i + 1}\n\n" for i in range(message_count)]
)
assert result == expected
@pytest.mark.parametrize(
"content",
[
"Hello, world!",
"This is a longer message with multiple words.",
"This message\nhas multiple\nlines.",
"This message has special characters: !@#$%^&*()",
"This message has unicode characters: 你好,世界!",
],
)
def test_return_history_as_string_with_different_contents(content):
conv = Conversation()
conv.add("user", content)
result = conv.return_history_as_string()
expected = f"user: {content}\n\n"
assert result == expected
def test_return_history_as_string_with_large_message(conversation):
large_message = "Hello, world! " * 10000 # 10,000 repetitions
conversation.add("user", large_message)
result = conversation.return_history_as_string()
expected = (
"user: Hello, world!\n\nassistant: Hello, user!\n\nuser:"
f" {large_message}\n\n"
)
assert result == expected
def test_search_keyword_in_conversation(conversation):
result = conversation.search_keyword_in_conversation("Hello")
assert len(result) == 2
assert result[0]["content"] == "Hello, world!"
assert result[1]["content"] == "Hello, user!"
def test_export_import_conversation(conversation, tmp_path):
filename = tmp_path / "conversation.txt"
conversation.export_conversation(filename)
new_conversation = Conversation()
new_conversation.import_conversation(filename)
assert (
new_conversation.return_history_as_string()
== conversation.return_history_as_string()
)
def test_count_messages_by_role(conversation):
counts = conversation.count_messages_by_role()
assert counts["user"] == 1
assert counts["assistant"] == 1
def test_display_conversation(capsys, conversation):
conversation.display_conversation()
captured = capsys.readouterr()
assert "user: Hello, world!\n\n" in captured.out
assert "assistant: Hello, user!\n\n" in captured.out
def test_display_conversation_detailed(capsys, conversation):
conversation.display_conversation(detailed=True)
captured = capsys.readouterr()
assert "user: Hello, world!\n\n" in captured.out
assert "assistant: Hello, user!\n\n" in captured.out
def test_search():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.search("Hello")
assert len(results) == 2
assert results[0]["content"] == "Hello, world!"
assert results[1]["content"] == "Hello, user!"
def test_return_history_as_string():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
result = conv.return_history_as_string()
expected = "user: Hello, world!\n\nassistant: Hello, user!\n\n"
assert result == expected
def test_search_no_results():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.search("Goodbye")
assert len(results) == 0
def test_search_case_insensitive():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.search("hello")
assert len(results) == 2
assert results[0]["content"] == "Hello, world!"
assert results[1]["content"] == "Hello, user!"
def test_search_multiple_occurrences():
conv = Conversation()
conv.add("user", "Hello, world! Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.search("Hello")
assert len(results) == 2
assert results[0]["content"] == "Hello, world! Hello, world!"
assert results[1]["content"] == "Hello, user!"
def test_query_no_results():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.query("Goodbye")
assert len(results) == 0
def test_query_case_insensitive():
conv = Conversation()
conv.add("user", "Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.query("hello")
assert len(results) == 2
assert results[0]["content"] == "Hello, world!"
assert results[1]["content"] == "Hello, user!"
def test_query_multiple_occurrences():
conv = Conversation()
conv.add("user", "Hello, world! Hello, world!")
conv.add("assistant", "Hello, user!")
results = conv.query("Hello")
assert len(results) == 2
assert results[0]["content"] == "Hello, world! Hello, world!"
assert results[1]["content"] == "Hello, user!"
Loading…
Cancel
Save