Initiaal push

pull/175/head
Sashin 1 year ago
parent 6cf5cdf39f
commit 305d02bd90

@ -0,0 +1,81 @@
# Qdrant Client Library
## Overview
The Qdrant Client Library is designed for interacting with the Qdrant vector database, allowing efficient storage and retrieval of high-dimensional vector data. It integrates with machine learning models for embedding and is particularly suited for search and recommendation systems.
## Installation
```python
pip install qdrant-client sentence-transformers httpx
```
## Class Definition: Qdrant
```python
class Qdrant:
def __init__(self, api_key: str, host: str, port: int = 6333, collection_name: str = "qdrant", model_name: str = "BAAI/bge-small-en-v1.5", https: bool = True):
...
```
### Constructor Parameters
| Parameter | Type | Description | Default Value |
|-----------------|---------|--------------------------------------------------|-----------------------|
| api_key | str | API key for authentication. | - |
| host | str | Host address of the Qdrant server. | - |
| port | int | Port number for the Qdrant server. | 6333 |
| collection_name | str | Name of the collection to be used or created. | "qdrant" |
| model_name | str | Name of the sentence transformer model. | "BAAI/bge-small-en-v1.5" |
| https | bool | Flag to use HTTPS for connection. | True |
### Methods
#### `_load_embedding_model(model_name: str)`
Loads the sentence embedding model.
#### `_setup_collection()`
Checks if the specified collection exists in Qdrant; if not, creates it.
#### `add_vectors(docs: List[dict]) -> OperationResponse`
Adds vectors to the Qdrant collection.
#### `search_vectors(query: str, limit: int = 3) -> SearchResult`
Searches the Qdrant collection for vectors similar to the query vector.
## Usage Examples
### Example 1: Setting Up the Qdrant Client
```python
from qdrant_client import Qdrant
qdrant_client = Qdrant(api_key="your_api_key", host="localhost", port=6333)
```
### Example 2: Adding Vectors to a Collection
```python
documents = [
{"page_content": "Sample text 1"},
{"page_content": "Sample text 2"}
]
operation_info = qdrant_client.add_vectors(documents)
print(operation_info)
```
### Example 3: Searching for Vectors
```python
search_result = qdrant_client.search_vectors("Sample search query")
print(search_result)
```
## Further Information
Refer to the [Qdrant Documentation](https://qdrant.tech/docs) for more details on the Qdrant vector database.

@ -101,6 +101,7 @@ nav:
- swarms.memory:
- PineconeVectorStoreStore: "swarms/memory/pinecone.md"
- PGVectorStore: "swarms/memory/pg.md"
- Qdrant: "swarms/memory/qdrant.md"
- Guides:
- Overview: "examples/index.md"
- Agents:

@ -1,5 +1,4 @@
from typing import List
from qdrant_client.http.models import CollectionInfoResponse, OperationResponse, SearchResult
from sentence_transformers import SentenceTransformer
from httpx import RequestError
from qdrant_client import QdrantClient
@ -7,6 +6,22 @@ from qdrant_client.http.models import Distance, VectorParams, PointStruct
class Qdrant:
def __init__(self, api_key: str, host: str, port: int = 6333, collection_name: str = "qdrant", model_name: str = "BAAI/bge-small-en-v1.5", https: bool = True):
"""
Qdrant class for managing collections and performing vector operations using QdrantClient.
Attributes:
client (QdrantClient): The Qdrant client for interacting with the Qdrant server.
collection_name (str): Name of the collection to be managed in Qdrant.
model (SentenceTransformer): The model used for generating sentence embeddings.
Args:
api_key (str): API key for authenticating with Qdrant.
host (str): Host address of the Qdrant server.
port (int): Port number of the Qdrant server. Defaults to 6333.
collection_name (str): Name of the collection to be used or created. Defaults to "qdrant".
model_name (str): Name of the model to be used for embeddings. Defaults to "BAAI/bge-small-en-v1.5".
https (bool): Flag to indicate if HTTPS should be used. Defaults to True.
"""
try:
self.client = QdrantClient(url=host, port=port, api_key=api_key)
self.collection_name = collection_name
@ -16,6 +31,12 @@ class Qdrant:
print(f"Error setting up QdrantClient: {e}")
def _load_embedding_model(self, model_name: str):
"""
Loads the sentence embedding model specified by the model name.
Args:
model_name (str): The name of the model to load for generating embeddings.
"""
try:
self.model = SentenceTransformer(model_name)
except Exception as e:
@ -34,6 +55,15 @@ class Qdrant:
print(f"Collection '{self.collection_name}' created.")
def add_vectors(self, docs: List[dict]):
"""
Adds vector representations of documents to the Qdrant collection.
Args:
docs (List[dict]): A list of documents where each document is a dictionary with at least a 'page_content' key.
Returns:
OperationResponse or None: Returns the operation information if successful, otherwise None.
"""
points = []
for i, doc in enumerate(docs):
try:
@ -57,6 +87,16 @@ class Qdrant:
return None
def search_vectors(self, query: str, limit: int = 3):
"""
Searches the collection for vectors similar to the query vector.
Args:
query (str): The query string to be converted into a vector and used for searching.
limit (int): The number of search results to return. Defaults to 3.
Returns:
SearchResult or None: Returns the search results if successful, otherwise None.
"""
try:
query_vector = self.model.encode(query, normalize_embeddings=True)
search_result = self.client.search(

Loading…
Cancel
Save