parent
cb76ed1213
commit
30824ea00d
After Width: | Height: | Size: 113 KiB |
@ -0,0 +1,14 @@
|
||||
from swarms import GPT4VisionAPI
|
||||
|
||||
# Initialize with default API key and custom max_tokens
|
||||
api = GPT4VisionAPI(max_tokens=1000)
|
||||
|
||||
# Define the task and image URL
|
||||
task = "Describe the scene in the image."
|
||||
img = "/home/kye/.swarms/swarms/examples/Screenshot from 2024-02-20 05-55-34.png"
|
||||
|
||||
# Run the GPT-4 Vision model
|
||||
response = api.run(task, img)
|
||||
|
||||
# Print the model's response
|
||||
print(response)
|
@ -0,0 +1,14 @@
|
||||
from swarms import QwenVLMultiModal
|
||||
|
||||
# Instantiate the QwenVLMultiModal model
|
||||
model = QwenVLMultiModal(
|
||||
model_name="Qwen/Qwen-VL-Chat",
|
||||
device="cuda",
|
||||
quantize=True,
|
||||
)
|
||||
|
||||
# Run the model
|
||||
response = model("Hello, how are you?", "https://example.com/image.jpg")
|
||||
|
||||
# Print the response
|
||||
print(response)
|
@ -0,0 +1,29 @@
|
||||
import os
|
||||
import sys
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Import the OpenAIChat model and the Agent struct
|
||||
from swarms import OpenAIChat, Agent
|
||||
|
||||
# Load the environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Get the API key from the environment
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
# Initialize the language model
|
||||
llm = OpenAIChat(
|
||||
temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
|
||||
)
|
||||
|
||||
|
||||
print(f'this is a test msg for stdout and stderr: {sys.stdout}, {sys.stderr}')
|
||||
|
||||
## Initialize the workflow
|
||||
agent = Agent(llm=llm, max_loops=1, autosave=True, dashboard=True)
|
||||
|
||||
# Run the workflow on a task
|
||||
out = agent.run("Generate a 10,000 word blog on health and wellness.")
|
||||
|
||||
print(out)
|
@ -0,0 +1,13 @@
|
||||
# Import necessary modules and classes
|
||||
from swarms.models import Anthropic
|
||||
|
||||
# Initialize an instance of the Anthropic class
|
||||
model = Anthropic(anthropic_api_key="")
|
||||
|
||||
# Using the run method
|
||||
# completion_1 = model.run("What is the capital of France?")
|
||||
# print(completion_1)
|
||||
|
||||
# Using the __call__ method
|
||||
completion_2 = model("How far is the moon from the earth?", stop=["miles", "km"])
|
||||
print(completion_2)
|
@ -0,0 +1,24 @@
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from swarms import OpenAIChat, Task, ConcurrentWorkflow, Agent
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
# Load environment variables
|
||||
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
||||
agent = Agent(llm=llm, max_loops=1)
|
||||
|
||||
# Create a workflow
|
||||
workflow = ConcurrentWorkflow(max_workers=5)
|
||||
|
||||
# Create tasks
|
||||
task1 = Task(agent, "What's the weather in miami")
|
||||
task2 = Task(agent, "What's the weather in new york")
|
||||
task3 = Task(agent, "What's the weather in london")
|
||||
|
||||
# Add tasks to the workflow
|
||||
workflow.add(tasks=[task1, task2, task3])
|
||||
|
||||
# Run the workflow
|
||||
workflow.run()
|
@ -0,0 +1,14 @@
|
||||
'''from swarms.models import Dalle3
|
||||
|
||||
# Create an instance of the Dalle3 class with high quality
|
||||
dalle3 = Dalle3(quality="high")
|
||||
|
||||
# Define a text prompt
|
||||
task = "A high-quality image of a sunset"
|
||||
|
||||
# Generate a high-quality image from the text prompt
|
||||
image_url = dalle3(task)
|
||||
|
||||
# Print the generated image URL
|
||||
print(image_url)
|
||||
'''
|
@ -0,0 +1,18 @@
|
||||
from swarms.models import HuggingfaceLLM
|
||||
|
||||
# Initialize with custom configuration
|
||||
custom_config = {
|
||||
"quantize": True,
|
||||
"quantization_config": {"load_in_4bit": True},
|
||||
"verbose": True,
|
||||
}
|
||||
inference = HuggingfaceLLM(
|
||||
model_id="NousResearch/Nous-Hermes-2-Vision-Alpha", **custom_config
|
||||
)
|
||||
|
||||
# Generate text based on a prompt
|
||||
prompt_text = (
|
||||
"Create a list of known biggest risks of structural collapse with references"
|
||||
)
|
||||
generated_text = inference(prompt_text)
|
||||
print(generated_text)
|
@ -0,0 +1,33 @@
|
||||
# Import the idefics model from the swarms.models module
|
||||
from swarms.models import Idefics
|
||||
|
||||
# Create an instance of the idefics model
|
||||
model = Idefics()
|
||||
|
||||
# Define user input with an image URL and chat with the model
|
||||
user_input = (
|
||||
"User: What is in this image?"
|
||||
" https://upload.wikimedia.org/wikipedia/commons/8/86/Id%C3%A9fix.JPG"
|
||||
)
|
||||
response = model.chat(user_input)
|
||||
print(response)
|
||||
|
||||
# Define another user input with an image URL and chat with the model
|
||||
user_input = (
|
||||
"User: And who is that?"
|
||||
" https://static.wikia.nocookie.net/asterix/images/2/25/R22b.gif/revision/latest?cb=20110815073052"
|
||||
)
|
||||
response = model.chat(user_input)
|
||||
print(response)
|
||||
|
||||
# Set the checkpoint of the model to "new_checkpoint"
|
||||
model.set_checkpoint("new_checkpoint")
|
||||
|
||||
# Set the device of the model to "cpu"
|
||||
model.set_device("cpu")
|
||||
|
||||
# Set the maximum length of the chat to 200
|
||||
model.set_max_length(200)
|
||||
|
||||
# Clear the chat history of the model
|
||||
model.clear_chat_history()
|
@ -0,0 +1,10 @@
|
||||
from swarms import Kosmos
|
||||
|
||||
# Initialize the model
|
||||
model = Kosmos()
|
||||
|
||||
# Generate
|
||||
out = model.run("Analyze the reciepts in this image", "docs.jpg")
|
||||
|
||||
# Print the output
|
||||
print(out)
|
@ -0,0 +1,100 @@
|
||||
from swarms.structs import Agent
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from swarms.models import GPT4VisionAPI
|
||||
from swarms.prompts.logistics import (
|
||||
Health_Security_Agent_Prompt,
|
||||
Quality_Control_Agent_Prompt,
|
||||
Productivity_Agent_Prompt,
|
||||
Safety_Agent_Prompt,
|
||||
Security_Agent_Prompt,
|
||||
Sustainability_Agent_Prompt,
|
||||
Efficiency_Agent_Prompt,
|
||||
)
|
||||
|
||||
# Load ENV
|
||||
load_dotenv()
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
# GPT4VisionAPI
|
||||
llm = GPT4VisionAPI(openai_api_key=api_key)
|
||||
|
||||
# Image for analysis
|
||||
factory_image = "factory_image1.jpg"
|
||||
|
||||
# Initialize agents with respective prompts
|
||||
health_security_agent = Agent(
|
||||
llm=llm,
|
||||
sop=Health_Security_Agent_Prompt,
|
||||
max_loops=1,
|
||||
multi_modal=True,
|
||||
)
|
||||
|
||||
# Quality control agent
|
||||
quality_control_agent = Agent(
|
||||
llm=llm,
|
||||
sop=Quality_Control_Agent_Prompt,
|
||||
max_loops=1,
|
||||
multi_modal=True,
|
||||
)
|
||||
|
||||
|
||||
# Productivity Agent
|
||||
productivity_agent = Agent(
|
||||
llm=llm,
|
||||
sop=Productivity_Agent_Prompt,
|
||||
max_loops=1,
|
||||
multi_modal=True,
|
||||
)
|
||||
|
||||
# Initiailize safety agent
|
||||
safety_agent = Agent(llm=llm, sop=Safety_Agent_Prompt, max_loops=1, multi_modal=True)
|
||||
|
||||
# Init the security agent
|
||||
security_agent = Agent(
|
||||
llm=llm, sop=Security_Agent_Prompt, max_loops=1, multi_modal=True
|
||||
)
|
||||
|
||||
|
||||
# Initialize sustainability agent
|
||||
sustainability_agent = Agent(
|
||||
llm=llm,
|
||||
sop=Sustainability_Agent_Prompt,
|
||||
max_loops=1,
|
||||
multi_modal=True,
|
||||
)
|
||||
|
||||
|
||||
# Initialize efficincy agent
|
||||
efficiency_agent = Agent(
|
||||
llm=llm,
|
||||
sop=Efficiency_Agent_Prompt,
|
||||
max_loops=1,
|
||||
multi_modal=True,
|
||||
)
|
||||
|
||||
# Run agents with respective tasks on the same image
|
||||
health_analysis = health_security_agent.run(
|
||||
"Analyze the safety of this factory", factory_image
|
||||
)
|
||||
quality_analysis = quality_control_agent.run(
|
||||
"Examine product quality in the factory", factory_image
|
||||
)
|
||||
productivity_analysis = productivity_agent.run(
|
||||
"Evaluate factory productivity", factory_image
|
||||
)
|
||||
safety_analysis = safety_agent.run(
|
||||
"Inspect the factory's adherence to safety standards",
|
||||
factory_image,
|
||||
)
|
||||
security_analysis = security_agent.run(
|
||||
"Assess the factory's security measures and systems",
|
||||
factory_image,
|
||||
)
|
||||
sustainability_analysis = sustainability_agent.run(
|
||||
"Examine the factory's sustainability practices", factory_image
|
||||
)
|
||||
efficiency_analysis = efficiency_agent.run(
|
||||
"Analyze the efficiency of the factory's manufacturing process",
|
||||
factory_image,
|
||||
)
|
@ -0,0 +1,10 @@
|
||||
from swarms.models import Mixtral
|
||||
|
||||
# Initialize the Mixtral model with 4 bit and flash attention!
|
||||
mixtral = Mixtral(load_in_4bit=True, use_flash_attention_2=True)
|
||||
|
||||
# Generate text for a simple task
|
||||
generated_text = mixtral.run("Generate a creative story.")
|
||||
|
||||
# Print the generated text
|
||||
print(generated_text)
|
@ -0,0 +1,26 @@
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from swarms import OpenAIChat, Task, RecursiveWorkflow, Agent
|
||||
|
||||
# Load environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
# Load environment variables
|
||||
llm = OpenAIChat(openai_api_key=os.getenv("OPENAI_API_KEY"))
|
||||
agent = Agent(llm=llm, max_loops=1)
|
||||
|
||||
# Create a workflow
|
||||
workflow = RecursiveWorkflow(stop_token="<DONE>")
|
||||
|
||||
# Create tasks
|
||||
task1 = Task(agent, "What's the weather in miami")
|
||||
task2 = Task(agent, "What's the weather in new york")
|
||||
task3 = Task(agent, "What's the weather in london")
|
||||
|
||||
# Add tasks to the workflow
|
||||
workflow.add(task1)
|
||||
workflow.add(task2)
|
||||
workflow.add(task3)
|
||||
|
||||
# Run the workflow
|
||||
workflow.run()
|
@ -0,0 +1,46 @@
|
||||
import os
|
||||
from swarms import OpenAIChat, Agent, SequentialWorkflow
|
||||
from dotenv import load_dotenv
|
||||
|
||||
load_dotenv()
|
||||
|
||||
# Load the environment variables
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
|
||||
# Initialize the language agent
|
||||
llm = OpenAIChat(
|
||||
temperature=0.5, model_name="gpt-4", openai_api_key=api_key, max_tokens=4000
|
||||
)
|
||||
|
||||
|
||||
# Initialize the agent with the language agent
|
||||
agent1 = Agent(llm=llm, max_loops=1)
|
||||
|
||||
# Create another agent for a different task
|
||||
agent2 = Agent(llm=llm, max_loops=1)
|
||||
|
||||
# Create another agent for a different task
|
||||
agent3 = Agent(llm=llm, max_loops=1)
|
||||
|
||||
# Create the workflow
|
||||
workflow = SequentialWorkflow(max_loops=1)
|
||||
|
||||
# Add tasks to the workflow
|
||||
workflow.add(
|
||||
agent1,
|
||||
"Generate a 10,000 word blog on health and wellness.",
|
||||
)
|
||||
|
||||
# Suppose the next task takes the output of the first task as input
|
||||
workflow.add(
|
||||
agent2,
|
||||
"Summarize the generated blog",
|
||||
)
|
||||
|
||||
# Run the workflow
|
||||
workflow.run()
|
||||
|
||||
# Output the results
|
||||
for task in workflow.tasks:
|
||||
print(f"Task: {task.description}, Result: {task.result}")
|
@ -0,0 +1,43 @@
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from swarms import (
|
||||
OpenAIChat,
|
||||
Conversation,
|
||||
)
|
||||
|
||||
conv = Conversation(
|
||||
time_enabled=True,
|
||||
)
|
||||
|
||||
# Load the environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Get the API key from the environment
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
# Initialize the language model
|
||||
llm = OpenAIChat(openai_api_key=api_key, model_name="gpt-4")
|
||||
|
||||
|
||||
# Run the language model in a loop
|
||||
def interactive_conversation(llm):
|
||||
conv = Conversation()
|
||||
while True:
|
||||
user_input = input("User: ")
|
||||
conv.add("user", user_input)
|
||||
if user_input.lower() == "quit":
|
||||
break
|
||||
task = conv.return_history_as_string() # Get the conversation history
|
||||
out = llm(task)
|
||||
conv.add("assistant", out)
|
||||
print(
|
||||
f"Assistant: {out}",
|
||||
)
|
||||
conv.display_conversation()
|
||||
conv.export_conversation("conversation.txt")
|
||||
|
||||
|
||||
# Replace with your LLM instance
|
||||
interactive_conversation(llm)
|
@ -0,0 +1,44 @@
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Import the OpenAIChat model and the Agent struct
|
||||
from swarms import OpenAIChat, Agent, SwarmNetwork
|
||||
|
||||
# Load the environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Get the API key from the environment
|
||||
api_key = os.environ.get("OPENAI_API_KEY")
|
||||
|
||||
# Initialize the language model
|
||||
llm = OpenAIChat(
|
||||
temperature=0.5,
|
||||
openai_api_key=api_key,
|
||||
)
|
||||
|
||||
## Initialize the workflow
|
||||
agent = Agent(llm=llm, max_loops=1, agent_name="Social Media Manager")
|
||||
agent2 = Agent(llm=llm, max_loops=1, agent_name=" Product Manager")
|
||||
agent3 = Agent(llm=llm, max_loops=1, agent_name="SEO Manager")
|
||||
|
||||
|
||||
# Load the swarmnet with the agents
|
||||
swarmnet = SwarmNetwork(
|
||||
agents=[agent, agent2, agent3],
|
||||
)
|
||||
|
||||
# List the agents in the swarm network
|
||||
out = swarmnet.list_agents()
|
||||
print(out)
|
||||
|
||||
# Run the workflow on a task
|
||||
out = swarmnet.run_single_agent(
|
||||
agent2.id, "Generate a 10,000 word blog on health and wellness."
|
||||
)
|
||||
print(out)
|
||||
|
||||
|
||||
# Run all the agents in the swarm network on a task
|
||||
out = swarmnet.run_many_agents("Generate a 10,000 word blog on health and wellness.")
|
||||
print(out)
|
@ -0,0 +1,25 @@
|
||||
hey guys, we out here testing out swarms which is a multi-modal agent
|
||||
framework which potentially makes all the agents work in a single pot
|
||||
for instance take an empty pot and place all the known agents in that
|
||||
pot and output a well structured answer out of it
|
||||
|
||||
that's basically it, we belive that a multi-agent framework beats a single
|
||||
agent framework which is not really rocket science
|
||||
|
||||
ight first we gotta make sure out evn clean, install python3-pip,
|
||||
this runs on python3.10
|
||||
|
||||
our current version of swarms==4.1.0
|
||||
|
||||
make sure you in a virtual env or conda
|
||||
|
||||
just do
|
||||
$ python3 -m venv ~/.venv
|
||||
$ source ~/.venv/bin/active
|
||||
|
||||
then boom we in a virtual env LFG
|
||||
|
||||
now for the best we install swarms
|
||||
|
||||
$ pip3 instll --upgrade swamrs==4.1.0
|
||||
|
@ -0,0 +1,53 @@
|
||||
import os
|
||||
|
||||
from dotenv import load_dotenv
|
||||
|
||||
from swarms.structs import Agent, OpenAIChat, Task
|
||||
|
||||
# Load the environment variables
|
||||
load_dotenv()
|
||||
|
||||
|
||||
# Define a function to be used as the action
|
||||
def my_action():
|
||||
print("Action executed")
|
||||
|
||||
|
||||
# Define a function to be used as the condition
|
||||
def my_condition():
|
||||
print("Condition checked")
|
||||
return True
|
||||
|
||||
|
||||
# Create an agent
|
||||
agent = Agent(
|
||||
llm=OpenAIChat(openai_api_key=os.environ["OPENAI_API_KEY"]),
|
||||
max_loops=1,
|
||||
dashboard=False,
|
||||
)
|
||||
|
||||
# Create a task
|
||||
task = Task(
|
||||
description=(
|
||||
"Generate a report on the top 3 biggest expenses for small"
|
||||
" businesses and how businesses can save 20%"
|
||||
),
|
||||
agent=agent,
|
||||
)
|
||||
|
||||
# Set the action and condition
|
||||
task.set_action(my_action)
|
||||
task.set_condition(my_condition)
|
||||
|
||||
# Execute the task
|
||||
print("Executing task...")
|
||||
task.run()
|
||||
|
||||
# Check if the task is completed
|
||||
if task.is_completed():
|
||||
print("Task completed")
|
||||
else:
|
||||
print("Task not completed")
|
||||
|
||||
# Output the result of the task
|
||||
print(f"Task result: {task.result}")
|
@ -0,0 +1,30 @@
|
||||
# Import necessary libraries
|
||||
from transformers import AutoModelForCausalLM, AutoTokenizer
|
||||
from swarms import ToolAgent
|
||||
|
||||
# Load the pre-trained model and tokenizer
|
||||
model = AutoModelForCausalLM.from_pretrained("databricks/dolly-v2-12b")
|
||||
tokenizer = AutoTokenizer.from_pretrained("databricks/dolly-v2-12b")
|
||||
|
||||
# Define a JSON schema for person's information
|
||||
json_schema = {
|
||||
"type": "object",
|
||||
"properties": {
|
||||
"name": {"type": "string"},
|
||||
"age": {"type": "number"},
|
||||
"is_student": {"type": "boolean"},
|
||||
"courses": {"type": "array", "items": {"type": "string"}},
|
||||
},
|
||||
}
|
||||
|
||||
# Define the task to generate a person's information
|
||||
task = "Generate a person's information based on the following schema:"
|
||||
|
||||
# Create an instance of the ToolAgent class
|
||||
agent = ToolAgent(model=model, tokenizer=tokenizer, json_schema=json_schema)
|
||||
|
||||
# Run the agent to generate the person's information
|
||||
generated_data = agent.run(task)
|
||||
|
||||
# Print the generated data
|
||||
print(generated_data)
|
@ -0,0 +1,33 @@
|
||||
# Importing necessary modules
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
from swarms import Worker, OpenAIChat, tool
|
||||
|
||||
# Loading environment variables from .env file
|
||||
load_dotenv()
|
||||
|
||||
# Retrieving the OpenAI API key from environment variables
|
||||
api_key = os.getenv("OPENAI_API_KEY")
|
||||
|
||||
|
||||
# Create a tool
|
||||
@tool
|
||||
def search_api(query: str):
|
||||
pass
|
||||
|
||||
|
||||
# Creating a Worker instance
|
||||
worker = Worker(
|
||||
name="My Worker",
|
||||
role="Worker",
|
||||
human_in_the_loop=False,
|
||||
tools=[search_api],
|
||||
temperature=0.5,
|
||||
llm=OpenAIChat(openai_api_key=api_key),
|
||||
)
|
||||
|
||||
# Running the worker with a prompt
|
||||
out = worker.run("Hello, how are you? Create an image of how your are doing!")
|
||||
|
||||
# Printing the output
|
||||
print(out)
|
@ -0,0 +1,12 @@
|
||||
# Import the model
|
||||
from swarms import ZeroscopeTTV
|
||||
|
||||
# Initialize the model
|
||||
zeroscope = ZeroscopeTTV()
|
||||
|
||||
# Specify the task
|
||||
task = "A person is walking on the street."
|
||||
|
||||
# Generate the video!
|
||||
video_path = zeroscope(task)
|
||||
print(video_path)
|
@ -0,0 +1,4 @@
|
||||
import sys
|
||||
|
||||
print('this is the standard output')
|
||||
print('This is the standard error', file=sys.stderr)
|
Loading…
Reference in new issue