parent
1c96e28427
commit
315ce2d709
@ -0,0 +1,351 @@
|
|||||||
|
# Our Philosophy: Simplifying Multi-Agent Collaboration Through Readable Code and Performance Optimization
|
||||||
|
|
||||||
|
Our mission is to streamline multi-agent collaboration by emphasizing simplicity, readability, and performance in our codebase. This document outlines our core tactics:
|
||||||
|
|
||||||
|
- **Readable Code with Type Annotations, Documentation, and Logging**
|
||||||
|
- **Bleeding-Edge Performance via Concurrency and Parallelism**
|
||||||
|
- **Simplified Abstractions for Multi-Agent Collaboration**
|
||||||
|
|
||||||
|
By adhering to these principles, we aim to make our systems more maintainable, scalable, and efficient, facilitating easier integration and collaboration among developers and agents alike.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 1. Emphasizing Readable Code
|
||||||
|
|
||||||
|
Readable code is the cornerstone of maintainable and scalable systems. It ensures that developers can easily understand, modify, and extend the codebase.
|
||||||
|
|
||||||
|
### 1.1 Use of Type Annotations
|
||||||
|
|
||||||
|
Type annotations enhance code readability and catch errors early in the development process.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def process_data(data: List[str]) -> Dict[str, int]:
|
||||||
|
result = {}
|
||||||
|
for item in data:
|
||||||
|
result[item] = len(item)
|
||||||
|
return result
|
||||||
|
```
|
||||||
|
|
||||||
|
### 1.2 Code Style Guidelines
|
||||||
|
|
||||||
|
Adhering to consistent code style guidelines, such as PEP 8 for Python, ensures uniformity across the codebase.
|
||||||
|
|
||||||
|
- **Indentation:** Use 4 spaces per indentation level.
|
||||||
|
- **Variable Naming:** Use `snake_case` for variables and functions.
|
||||||
|
- **Class Naming:** Use `PascalCase` for class names.
|
||||||
|
|
||||||
|
### 1.3 Importance of Documentation
|
||||||
|
|
||||||
|
Comprehensive documentation helps new developers understand the purpose and functionality of code modules.
|
||||||
|
|
||||||
|
```python
|
||||||
|
def fetch_user_profile(user_id: str) -> UserProfile:
|
||||||
|
"""
|
||||||
|
Fetches the user profile from the database.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
user_id (str): The unique identifier of the user.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
UserProfile: An object containing user profile data.
|
||||||
|
"""
|
||||||
|
# Function implementation
|
||||||
|
```
|
||||||
|
|
||||||
|
### 1.4 Consistent Naming Conventions
|
||||||
|
|
||||||
|
Consistent naming reduces confusion and makes the code self-explanatory.
|
||||||
|
|
||||||
|
- **Functions:** Should be verbs (e.g., `calculate_total`).
|
||||||
|
- **Variables:** Should be nouns (e.g., `total_amount`).
|
||||||
|
- **Constants:** Should be uppercase (e.g., `MAX_RETRIES`).
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 2. Effective Logging Practices
|
||||||
|
|
||||||
|
Logging is essential for debugging and monitoring the health of applications.
|
||||||
|
|
||||||
|
### 2.1 Why Logging is Important
|
||||||
|
|
||||||
|
- **Debugging:** Helps identify issues during development and after deployment.
|
||||||
|
- **Monitoring:** Provides insights into the system's behavior in real-time.
|
||||||
|
- **Audit Trails:** Keeps a record of events for compliance and analysis.
|
||||||
|
|
||||||
|
### 2.2 Best Practices for Logging
|
||||||
|
|
||||||
|
- **Use Appropriate Log Levels:** DEBUG, INFO, WARNING, ERROR, CRITICAL.
|
||||||
|
- **Consistent Log Formatting:** Include timestamps, log levels, and messages.
|
||||||
|
- **Avoid Sensitive Information:** Do not log passwords or personal data.
|
||||||
|
|
||||||
|
### 2.3 Logging Examples
|
||||||
|
|
||||||
|
```python
|
||||||
|
import logging
|
||||||
|
|
||||||
|
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s:%(message)s')
|
||||||
|
|
||||||
|
def connect_to_service(url: str) -> bool:
|
||||||
|
logging.debug(f"Attempting to connect to {url}")
|
||||||
|
try:
|
||||||
|
# Connection logic
|
||||||
|
logging.info(f"Successfully connected to {url}")
|
||||||
|
return True
|
||||||
|
except ConnectionError as e:
|
||||||
|
logging.error(f"Connection failed to {url}: {e}")
|
||||||
|
return False
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 3. Achieving Bleeding-Edge Performance
|
||||||
|
|
||||||
|
Performance is critical, especially when dealing with multiple agents and large datasets.
|
||||||
|
|
||||||
|
### 3.1 Concurrency and Parallelism
|
||||||
|
|
||||||
|
Utilizing concurrency and parallelism can significantly improve performance.
|
||||||
|
|
||||||
|
- **Concurrency:** Dealing with multiple tasks by managing multiple threads.
|
||||||
|
- **Parallelism:** Executing multiple tasks simultaneously on multiple CPU cores.
|
||||||
|
|
||||||
|
### 3.2 Asynchronous Programming
|
||||||
|
|
||||||
|
Asynchronous programming allows for non-blocking operations, leading to better resource utilization.
|
||||||
|
|
||||||
|
```python
|
||||||
|
import asyncio
|
||||||
|
|
||||||
|
async def fetch_data(endpoint: str) -> dict:
|
||||||
|
async with aiohttp.ClientSession() as session:
|
||||||
|
async with session.get(endpoint) as response:
|
||||||
|
return await response.json()
|
||||||
|
|
||||||
|
async def main():
|
||||||
|
endpoints = ['https://api.example.com/data1', 'https://api.example.com/data2']
|
||||||
|
tasks = [fetch_data(url) for url in endpoints]
|
||||||
|
results = await asyncio.gather(*tasks)
|
||||||
|
print(results)
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
### 3.3 Utilizing Modern Hardware Capabilities
|
||||||
|
|
||||||
|
Leverage multi-core processors and GPUs for computationally intensive tasks.
|
||||||
|
|
||||||
|
- **Multi-threading:** Use threads for I/O-bound tasks.
|
||||||
|
- **Multi-processing:** Use processes for CPU-bound tasks.
|
||||||
|
- **GPU Acceleration:** Utilize GPUs for tasks like machine learning model training.
|
||||||
|
|
||||||
|
### 3.4 Code Example: Parallel Processing
|
||||||
|
|
||||||
|
```python
|
||||||
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
|
def process_item(item):
|
||||||
|
# Processing logic
|
||||||
|
return result
|
||||||
|
|
||||||
|
items = [1, 2, 3, 4, 5]
|
||||||
|
with ThreadPoolExecutor(max_workers=5) as executor:
|
||||||
|
results = list(executor.map(process_item, items))
|
||||||
|
```
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 4. Simplifying Multi-Agent Collaboration
|
||||||
|
|
||||||
|
Simplifying the abstraction of multi-agent collaboration makes it accessible and manageable.
|
||||||
|
|
||||||
|
### 4.1 Importance of Simple Abstractions
|
||||||
|
|
||||||
|
- **Ease of Use:** Simple interfaces make it easier for developers to integrate agents.
|
||||||
|
- **Maintainability:** Reduces complexity, making the codebase easier to maintain.
|
||||||
|
- **Scalability:** Simple abstractions can be extended without significant overhauls.
|
||||||
|
|
||||||
|
### 4.2 Standardizing Agent Interfaces
|
||||||
|
|
||||||
|
Every agent should adhere to a standard interface for consistency.
|
||||||
|
|
||||||
|
#### 4.2.1 Agent Base Class
|
||||||
|
|
||||||
|
```python
|
||||||
|
from abc import ABC, abstractmethod
|
||||||
|
|
||||||
|
class BaseAgent(ABC):
|
||||||
|
@abstractmethod
|
||||||
|
def run(self, task: str) -> Any:
|
||||||
|
pass
|
||||||
|
|
||||||
|
def __call__(self, task: str) -> Any:
|
||||||
|
return self.run(task)
|
||||||
|
|
||||||
|
@abstractmethod
|
||||||
|
async def arun(self, task: str) -> Any:
|
||||||
|
pass
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4.2.2 Example Agent Implementation
|
||||||
|
|
||||||
|
```python
|
||||||
|
class DataProcessingAgent(BaseAgent):
|
||||||
|
def run(self, task: str) -> str:
|
||||||
|
# Synchronous processing logic
|
||||||
|
return f"Processed {task}"
|
||||||
|
|
||||||
|
async def arun(self, task: str) -> str:
|
||||||
|
# Asynchronous processing logic
|
||||||
|
return f"Processed {task} asynchronously"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 4.2.3 Usage Example
|
||||||
|
|
||||||
|
```python
|
||||||
|
agent = DataProcessingAgent()
|
||||||
|
|
||||||
|
# Synchronous call
|
||||||
|
result = agent.run("data_task")
|
||||||
|
print(result) # Output: Processed data_task
|
||||||
|
|
||||||
|
# Asynchronous call
|
||||||
|
async def main():
|
||||||
|
result = await agent.arun("data_task")
|
||||||
|
print(result) # Output: Processed data_task asynchronously
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
### 4.3 Mermaid Diagram: Agent Interaction
|
||||||
|
|
||||||
|
```mermaid
|
||||||
|
sequenceDiagram
|
||||||
|
participant User
|
||||||
|
participant AgentA
|
||||||
|
participant AgentB
|
||||||
|
participant AgentC
|
||||||
|
|
||||||
|
User->>AgentA: run(task)
|
||||||
|
AgentA-->>AgentB: arun(sub_task)
|
||||||
|
AgentB-->>AgentC: run(sub_sub_task)
|
||||||
|
AgentC-->>AgentB: result_sub_sub_task
|
||||||
|
AgentB-->>AgentA: result_sub_task
|
||||||
|
AgentA-->>User: final_result
|
||||||
|
```
|
||||||
|
|
||||||
|
*Agents collaborating to fulfill a user's task.*
|
||||||
|
|
||||||
|
### 4.4 Simplified Collaboration Workflow
|
||||||
|
|
||||||
|
```mermaid
|
||||||
|
graph TD
|
||||||
|
UserRequest[User Request] --> Agent1[Agent 1]
|
||||||
|
Agent1 -->|run(task)| Agent2[Agent 2]
|
||||||
|
Agent2 -->|arun(task)| Agent3[Agent 3]
|
||||||
|
Agent3 -->|result| Agent2
|
||||||
|
Agent2 -->|result| Agent1
|
||||||
|
Agent1 -->|result| UserResponse[User Response]
|
||||||
|
```
|
||||||
|
|
||||||
|
*Workflow demonstrating how agents process a task collaboratively.*
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 5. Bringing It All Together
|
||||||
|
|
||||||
|
By integrating these principles, we create a cohesive system where agents can efficiently collaborate while maintaining code quality and performance.
|
||||||
|
|
||||||
|
### 5.1 Example: Multi-Agent System
|
||||||
|
|
||||||
|
#### 5.1.1 Agent Definitions
|
||||||
|
|
||||||
|
```python
|
||||||
|
class AgentA(BaseAgent):
|
||||||
|
def run(self, task: str) -> str:
|
||||||
|
# Agent A processing
|
||||||
|
return f"AgentA processed {task}"
|
||||||
|
|
||||||
|
async def arun(self, task: str) -> str:
|
||||||
|
# Agent A asynchronous processing
|
||||||
|
return f"AgentA processed {task} asynchronously"
|
||||||
|
|
||||||
|
class AgentB(BaseAgent):
|
||||||
|
def run(self, task: str) -> str:
|
||||||
|
# Agent B processing
|
||||||
|
return f"AgentB processed {task}"
|
||||||
|
|
||||||
|
async def arun(self, task: str) -> str:
|
||||||
|
# Agent B asynchronous processing
|
||||||
|
return f"AgentB processed {task} asynchronously"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5.1.2 Orchestrator Agent
|
||||||
|
|
||||||
|
```python
|
||||||
|
class OrchestratorAgent(BaseAgent):
|
||||||
|
def __init__(self):
|
||||||
|
self.agent_a = AgentA()
|
||||||
|
self.agent_b = AgentB()
|
||||||
|
|
||||||
|
def run(self, task: str) -> str:
|
||||||
|
result_a = self.agent_a.run(task)
|
||||||
|
result_b = self.agent_b.run(task)
|
||||||
|
return f"Orchestrated results: {result_a} & {result_b}"
|
||||||
|
|
||||||
|
async def arun(self, task: str) -> str:
|
||||||
|
result_a = await self.agent_a.arun(task)
|
||||||
|
result_b = await self.agent_b.arun(task)
|
||||||
|
return f"Orchestrated results: {result_a} & {result_b}"
|
||||||
|
```
|
||||||
|
|
||||||
|
#### 5.1.3 Execution
|
||||||
|
|
||||||
|
```python
|
||||||
|
orchestrator = OrchestratorAgent()
|
||||||
|
|
||||||
|
# Synchronous execution
|
||||||
|
result = orchestrator.run("task1")
|
||||||
|
print(result)
|
||||||
|
# Output: Orchestrated results: AgentA processed task1 & AgentB processed task1
|
||||||
|
|
||||||
|
# Asynchronous execution
|
||||||
|
async def main():
|
||||||
|
result = await orchestrator.arun("task1")
|
||||||
|
print(result)
|
||||||
|
# Output: Orchestrated results: AgentA processed task1 asynchronously & AgentB processed task1 asynchronously
|
||||||
|
|
||||||
|
asyncio.run(main())
|
||||||
|
```
|
||||||
|
|
||||||
|
### 5.2 Mermaid Diagram: Orchestrator Workflow
|
||||||
|
|
||||||
|
```mermaid
|
||||||
|
sequenceDiagram
|
||||||
|
participant User
|
||||||
|
participant Orchestrator
|
||||||
|
participant AgentA
|
||||||
|
participant AgentB
|
||||||
|
|
||||||
|
User->>Orchestrator: run(task)
|
||||||
|
Orchestrator->>AgentA: run(task)
|
||||||
|
Orchestrator->>AgentB: run(task)
|
||||||
|
AgentA-->>Orchestrator: result_a
|
||||||
|
AgentB-->>Orchestrator: result_b
|
||||||
|
Orchestrator-->>User: Orchestrated results
|
||||||
|
```
|
||||||
|
|
||||||
|
*Orchestrator coordinating between Agent A and Agent B.*
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
## 6. Conclusion
|
||||||
|
|
||||||
|
Our philosophy centers around making multi-agent collaboration as simple and efficient as possible by:
|
||||||
|
|
||||||
|
- **Writing Readable Code:** Through type annotations, consistent styling, and thorough documentation.
|
||||||
|
- **Implementing Effective Logging:** To aid in debugging and monitoring.
|
||||||
|
- **Optimizing Performance:** Leveraging concurrency, parallelism, and modern hardware capabilities.
|
||||||
|
- **Simplifying Abstractions:** Standardizing agent interfaces to `run`, `__call__`, and `arun` methods.
|
||||||
|
|
||||||
|
By adhering to these principles, we create a robust foundation for scalable and maintainable systems that can adapt to evolving technological landscapes.
|
||||||
|
|
Loading…
Reference in new issue