[PineconDB][REFACTOR]

pull/299/head
Kye 1 year ago
parent b8c859109c
commit 31d0a17352

@ -1,4 +1,4 @@
# `PineconeVectorStoreStore` Documentation
# `PineconDB` Documentation
## Table of Contents

@ -105,7 +105,7 @@ nav:
- SequentialWorkflow: 'swarms/structs/sequential_workflow.md'
- swarms.memory:
- Weaviate: "swarms/memory/weaviate.md"
- PineconeVectorStoreStore: "swarms/memory/pinecone.md"
- PineconDB: "swarms/memory/pinecone.md"
- PGVectorStore: "swarms/memory/pg.md"
- swarms.utils:
- phoenix_trace_decorator: "swarms/utils/phoenix_tracer.md"

@ -1,14 +1,14 @@
from typing import Optional
from swarms.memory.base import BaseVectorStore
from swarms.memory.base_vectordb import VectorDatabase
import pinecone
from attr import define, field
from swarms.utils.hash import str_to_hash
@define
class PineconeVectorStoreStore(BaseVectorStore):
class PineconDB(VectorDatabase):
"""
PineconeVectorStore is a vector storage driver that uses Pinecone as the underlying storage engine.
PineconDB is a vector storage driver that uses Pinecone as the underlying storage engine.
Pinecone is a vector database that allows you to store, search, and retrieve high-dimensional vectors with
blazing speed and low latency. It is a managed service that is easy to use and scales effortlessly, so you can
@ -34,14 +34,14 @@ class PineconeVectorStoreStore(BaseVectorStore):
Creates a new index.
Usage:
>>> from swarms.memory.vector_stores.pinecone import PineconeVectorStore
>>> from swarms.memory.vector_stores.pinecone import PineconDB
>>> from swarms.utils.embeddings import USEEmbedding
>>> from swarms.utils.hash import str_to_hash
>>> from swarms.utils.dataframe import dataframe_to_hash
>>> import pandas as pd
>>>
>>> # Create a new PineconeVectorStore instance:
>>> pv = PineconeVectorStore(
>>> # Create a new PineconDB instance:
>>> pv = PineconDB(
>>> api_key="your-api-key",
>>> index_name="your-index-name",
>>> environment="us-west1-gcp",
@ -102,7 +102,7 @@ class PineconeVectorStoreStore(BaseVectorStore):
self.index = pinecone.Index(self.index_name)
def upsert_vector(
def add(
self,
vector: list[float],
vector_id: Optional[str] = None,
@ -110,7 +110,17 @@ class PineconeVectorStoreStore(BaseVectorStore):
meta: Optional[dict] = None,
**kwargs,
) -> str:
"""Upsert vector"""
"""Add a vector to the index.
Args:
vector (list[float]): _description_
vector_id (Optional[str], optional): _description_. Defaults to None.
namespace (Optional[str], optional): _description_. Defaults to None.
meta (Optional[dict], optional): _description_. Defaults to None.
Returns:
str: _description_
"""
vector_id = (
vector_id if vector_id else str_to_hash(str(vector))
)
@ -121,31 +131,15 @@ class PineconeVectorStoreStore(BaseVectorStore):
return vector_id
def load_entry(
self, vector_id: str, namespace: Optional[str] = None
) -> Optional[BaseVectorStore.Entry]:
"""Load entry"""
result = self.index.fetch(
ids=[vector_id], namespace=namespace
).to_dict()
vectors = list(result["vectors"].values())
if len(vectors) > 0:
vector = vectors[0]
return BaseVectorStore.Entry(
id=vector["id"],
meta=vector["metadata"],
vector=vector["values"],
namespace=result["namespace"],
)
else:
return None
def load_entries(self, namespace: Optional[str] = None):
"""Load all entries from the index.
Args:
namespace (Optional[str], optional): _description_. Defaults to None.
def load_entries(
self, namespace: Optional[str] = None
) -> list[BaseVectorStore.Entry]:
"""Load entries"""
Returns:
_type_: _description_
"""
# This is a hacky way to query up to 10,000 values from Pinecone. Waiting on an official API for fetching
# all values from a namespace:
# https://community.pinecone.io/t/is-there-a-way-to-query-all-the-vectors-and-or-metadata-from-a-namespace/797/5
@ -157,15 +151,14 @@ class PineconeVectorStoreStore(BaseVectorStore):
namespace=namespace,
)
return [
BaseVectorStore.Entry(
id=r["id"],
vector=r["values"],
meta=r["metadata"],
namespace=results["namespace"],
)
for r in results["matches"]
]
for result in results["matches"]:
entry = {
"id": result["id"],
"vector": result["values"],
"meta": result["metadata"],
"namespace": result["namespace"],
}
return entry
def query(
self,
@ -173,19 +166,26 @@ class PineconeVectorStoreStore(BaseVectorStore):
count: Optional[int] = None,
namespace: Optional[str] = None,
include_vectors: bool = False,
# PineconeVectorStoreStorageDriver-specific params:
# PineconDBStorageDriver-specific params:
include_metadata=True,
**kwargs,
) -> list[BaseVectorStore.QueryResult]:
"""Query vectors"""
):
"""Query the index for vectors similar to the given query string.
Args:
query (str): _description_
count (Optional[int], optional): _description_. Defaults to None.
namespace (Optional[str], optional): _description_. Defaults to None.
include_vectors (bool, optional): _description_. Defaults to False.
include_metadata (bool, optional): _description_. Defaults to True.
Returns:
_type_: _description_
"""
vector = self.embedding_driver.embed_string(query)
params = {
"top_k": (
count
if count
else BaseVectorStore.DEFAULT_QUERY_COUNT
),
"top_k": count,
"namespace": namespace,
"include_values": include_vectors,
"include_metadata": include_metadata,
@ -193,19 +193,22 @@ class PineconeVectorStoreStore(BaseVectorStore):
results = self.index.query(vector, **params)
return [
BaseVectorStore.QueryResult(
id=r["id"],
vector=r["values"],
score=r["score"],
meta=r["metadata"],
namespace=results["namespace"],
)
for r in results["matches"]
]
for r in results["matches"]:
entry = {
"id": results["id"],
"vector": results["values"],
"score": results["scores"],
"meta": results["metadata"],
"namespace": results["namespace"],
}
return entry
def create_index(self, name: str, **kwargs) -> None:
"""Create index"""
"""Create a new index.
Args:
name (str): _description_
"""
params = {
"name": name,
"dimension": self.embedding_driver.dimensions,

@ -1,6 +1,6 @@
import os
from unittest.mock import patch
from swarms.memory.pinecone import PineconeVectorStore
from swarms.memory.pinecone import PineconDB
api_key = os.getenv("PINECONE_API_KEY") or ""
@ -9,7 +9,7 @@ def test_init():
with patch("pinecone.init") as MockInit, patch(
"pinecone.Index"
) as MockIndex:
store = PineconeVectorStore(
store = PineconDB(
api_key=api_key,
index_name="test_index",
environment="test_env",
@ -21,7 +21,7 @@ def test_init():
def test_upsert_vector():
with patch("pinecone.init"), patch("pinecone.Index") as MockIndex:
store = PineconeVectorStore(
store = PineconDB(
api_key=api_key,
index_name="test_index",
environment="test_env",
@ -37,7 +37,7 @@ def test_upsert_vector():
def test_load_entry():
with patch("pinecone.init"), patch("pinecone.Index") as MockIndex:
store = PineconeVectorStore(
store = PineconDB(
api_key=api_key,
index_name="test_index",
environment="test_env",
@ -48,7 +48,7 @@ def test_load_entry():
def test_load_entries():
with patch("pinecone.init"), patch("pinecone.Index") as MockIndex:
store = PineconeVectorStore(
store = PineconDB(
api_key=api_key,
index_name="test_index",
environment="test_env",
@ -59,7 +59,7 @@ def test_load_entries():
def test_query():
with patch("pinecone.init"), patch("pinecone.Index") as MockIndex:
store = PineconeVectorStore(
store = PineconDB(
api_key=api_key,
index_name="test_index",
environment="test_env",
@ -72,7 +72,7 @@ def test_create_index():
with patch("pinecone.init"), patch("pinecone.Index"), patch(
"pinecone.create_index"
) as MockCreateIndex:
store = PineconeVectorStore(
store = PineconDB(
api_key=api_key,
index_name="test_index",
environment="test_env",

Loading…
Cancel
Save