[DEMO][FEAT][HiearchicalSwarm]

pull/474/head
Kye 8 months ago
parent a16a584093
commit 3292174dbc

@ -0,0 +1,17 @@
from swarms import Agent, OpenAIChat
agent = Agent(
agent_name="API Requester",
agent_description="This agent is responsible for making API requests.",
system_prompt="You're a helpful API Requester agent. ",
llm=OpenAIChat(),
autosave=True,
max_loops="auto",
dashboard=True,
interactive=True,
)
# Run the agent
out = agent.run("Create an api request to OpenAI in python.")
print(out)

@ -0,0 +1,219 @@
# Agent that picks up your intent
# Depending on your intent it routes you to an agent that can help you with your request.
# Account management agent and product support agent
# Account Management Agent --> Talk about the user, their account. Just understand the user's intent and route them to the right agent.
from swarms import Agent
import requests
import json
from swarms import BaseLLM, base_model_to_openai_function
from pydantic import BaseModel, Field
## Pydantic model for the tool schema
class HASSchema(BaseModel):
name: str = Field(
...,
title="Name",
description="The name of the agent to send the task to.",
)
task: str = Field(
...,
title="Task",
description="The task to send to the agent.",
)
swarm_schema = base_model_to_openai_function(HASSchema, output_str=True)
ACCOUNT_MANAGEMENT_SYSTEM_PROMPT = """
You are an Account Management Agent. Your primary role is to engage with users regarding their accounts. Your main tasks include understanding the user's intent, addressing their immediate needs, and routing them to the appropriate agent for further assistance. Be simple and direct in your communication.
When a user contacts you, start by greeting them and asking how you can assist with their account. Listen carefully to their concerns, questions, or issues. If the user provides information that is specific to their account, acknowledge it and ask any necessary follow-up questions to clarify their needs. Ensure that you fully understand their intent before proceeding.
Once you have a clear understanding of the user's request or issue, determine the best course of action. If you can resolve the issue yourself, do so efficiently. If the issue requires specialized assistance, explain to the user that you will route them to the appropriate agent who can help further. Ensure the user feels heard and understood throughout the process.
Your ultimate goal is to provide a seamless and positive experience for the user by effectively managing their inquiries and directing them to the right resource for resolution. Always maintain a polite and professional tone, and ensure that the user feels supported and valued.
"""
PRODUCT_SUPPORT_QA_SYSTEM_PROMPT = """
You are a Product Support Agent.
Your primary role is to provide assistance to users who have questions or issues related to the product. Your main tasks include understanding the user's needs, providing accurate information, and resolving any problems they may encounter. Be clear and concise in your communication.
"""
class llama3Hosted(BaseLLM):
"""
A class representing a hosted version of the Llama3 model.
Args:
model (str): The name or path of the Llama3 model to use.
temperature (float): The temperature parameter for generating responses.
max_tokens (int): The maximum number of tokens in the generated response.
system_prompt (str): The system prompt to use for generating responses.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
model (str): The name or path of the Llama3 model.
temperature (float): The temperature parameter for generating responses.
max_tokens (int): The maximum number of tokens in the generated response.
system_prompt (str): The system prompt for generating responses.
Methods:
run(task, *args, **kwargs): Generates a response for the given task.
"""
def __init__(
self,
model: str = "meta-llama/Meta-Llama-3-8B-Instruct",
temperature: float = 0.8,
max_tokens: int = 4000,
system_prompt: str = "You are a helpful assistant.",
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
self.system_prompt = system_prompt
def run(self, task: str, *args, **kwargs) -> str:
"""
Generates a response for the given task.
Args:
task (str): The user's task or input.
Returns:
str: The generated response from the Llama3 model.
"""
url = "http://34.204.8.31:30001/v1/chat/completions"
payload = json.dumps(
{
"model": self.model,
"messages": [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": task},
],
"stop_token_ids": [128009, 128001],
"temperature": self.temperature,
"max_tokens": self.max_tokens,
}
)
headers = {"Content-Type": "application/json"}
response = requests.request(
"POST", url, headers=headers, data=payload
)
response_json = response.json()
assistant_message = response_json["choices"][0]["message"][
"content"
]
return assistant_message
def select_agent_and_send_task(name: str = None, task: str = None):
"""
Select an agent and send a task to them.
Args:
name (str): The name of the agent to send the task to.
task (str): The task to send to the agent.
Returns:
str: The response from the agent.
"""
if name == "Product Support Agent":
agent = Agent(
agent_name="Product Support Agent",
system_prompt=PRODUCT_SUPPORT_QA_SYSTEM_PROMPT,
llm=llama3Hosted(),
max_loops=2,
autosave=True,
dashboard=False,
streaming_on=True,
verbose=True,
output_type=str,
metadata_output_type="json",
function_calling_format_type="OpenAI",
function_calling_type="json",
)
else:
return "Invalid agent name. Please select 'Account Management Agent' or 'Product Support Agent'."
response = agent.run(task)
return response
def parse_json_then_activate_agent(json_data: str):
"""
Parse the JSON data and activate the appropriate agent.
Args:
json_data (str): The JSON data containing the agent name and task.
Returns:
str: The response from the agent.
"""
try:
data = json.loads(json_data)
name = data.get("name")
task = data.get("task")
response = select_agent_and_send_task(name, task)
return response
except json.JSONDecodeError:
return "Invalid JSON data."
agent = Agent(
agent_name="Account Management Agent",
system_prompt=ACCOUNT_MANAGEMENT_SYSTEM_PROMPT,
# sop_list=[GLOSSARY_PROMPTS, FEW_SHORT_PROMPTS],
# sop=list_tool_schemas_json,
llm=llama3Hosted(
max_tokens=3000,
),
max_loops="auto",
interactive=True,
autosave=True,
dashboard=False,
streaming_on=True,
# interactive=True,
# tools=[search_weather], # or list of tools
verbose=True,
# Set the output type to the tool schema which is a BaseModel
list_base_models=[HASSchema],
output_type=str, # or dict, or str
metadata_output_type="json",
# List of schemas that the agent can handle
function_calling_format_type="OpenAI",
function_calling_type="json", # or soon yaml
)
# Run the agent to generate the person's information
generated_data = agent.run("I need help with my modem.")
parse_json_then_activate_agent(generated_data)
# Print the generated data
print(f"Generated data: {generated_data}")

@ -1,4 +1,4 @@
from swarms import Agent, AgentRearrange, Anthropic from swarms import Agent, AgentRearrange, OpenAIChat
# Initialize the director agent # Initialize the director agent
@ -6,7 +6,7 @@ from swarms import Agent, AgentRearrange, Anthropic
director = Agent( director = Agent(
agent_name="Director", agent_name="Director",
system_prompt="Directs the tasks for the workers", system_prompt="Directs the tasks for the workers",
llm=Anthropic(), llm=OpenAIChat(),
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -22,7 +22,7 @@ director = Agent(
worker1 = Agent( worker1 = Agent(
agent_name="Worker1", agent_name="Worker1",
system_prompt="Generates a transcript for a youtube video on what swarms are", system_prompt="Generates a transcript for a youtube video on what swarms are",
llm=Anthropic(), llm=OpenAIChat(),
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,
@ -37,7 +37,7 @@ worker1 = Agent(
worker2 = Agent( worker2 = Agent(
agent_name="Worker2", agent_name="Worker2",
system_prompt="Summarizes the transcript generated by Worker1", system_prompt="Summarizes the transcript generated by Worker1",
llm=Anthropic(), llm=OpenAIChat(),
max_loops=1, max_loops=1,
dashboard=False, dashboard=False,
streaming_on=True, streaming_on=True,

@ -0,0 +1,19 @@
from swarms import tool
# Create the wrapper to wrap the function
@tool(
name="Geo Coordinates Locator",
description=("Locates geo coordinates with a city and or zip code"),
return_string=False,
return_dict=False,
)
def send_api_request_to_get_geo_coordinates(
city: str = None, zip: int = None
):
return "Test"
# Run the function to get the schema
out = send_api_request_to_get_geo_coordinates()
print(out)

@ -5,7 +5,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "5.0.2" version = "5.0.3"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]
@ -48,8 +48,7 @@ Pillow = "10.3.0"
psutil = "*" psutil = "*"
sentry-sdk = "*" sentry-sdk = "*"
python-dotenv = "*" python-dotenv = "*"
# accelerate = "0.28.0" opencv-python-headless = "*"
opencv-python = "^4.9.0.80"
PyYAML = "*" PyYAML = "*"
docstring_parser = "0.16" docstring_parser = "0.16"

@ -1,10 +1,11 @@
import os import os
import shutil import shutil
def cleanup_json_logs(): def cleanup_json_logs():
# Define the root directory and the target directory # Define the root directory and the target directory
root_dir = os.getcwd() root_dir = os.getcwd()
target_dir = os.path.join(root_dir, 'artifacts5') target_dir = os.path.join(root_dir, "artifacts5")
# Create the target directory if it doesn't exist # Create the target directory if it doesn't exist
if not os.path.exists(target_dir): if not os.path.exists(target_dir):
@ -14,7 +15,11 @@ def cleanup_json_logs():
for dirpath, dirnames, filenames in os.walk(root_dir): for dirpath, dirnames, filenames in os.walk(root_dir):
for filename in filenames: for filename in filenames:
# If the file is a JSON log file, .log file or .txt file # If the file is a JSON log file, .log file or .txt file
if filename.endswith('.json') or filename.endswith('.log') or filename.endswith('.txt'): if (
filename.endswith(".json")
or filename.endswith(".log")
or filename.endswith(".txt")
):
# Construct the full file paths # Construct the full file paths
file_path = os.path.join(dirpath, filename) file_path = os.path.join(dirpath, filename)
target_path = os.path.join(target_dir, filename) target_path = os.path.join(target_dir, filename)
@ -24,5 +29,6 @@ def cleanup_json_logs():
print(f"All JSON, LOG and TXT files have been moved to {target_dir}") print(f"All JSON, LOG and TXT files have been moved to {target_dir}")
# Call the function # Call the function
cleanup_json_logs() cleanup_json_logs()

@ -1,7 +1,6 @@
from swarms.models.base_embedding_model import BaseEmbeddingModel from swarms.models.base_embedding_model import BaseEmbeddingModel
from swarms.models.base_llm import BaseLLM # noqa: E402 from swarms.models.base_llm import BaseLLM # noqa: E402
from swarms.models.base_multimodal_model import BaseMultiModalModel from swarms.models.base_multimodal_model import BaseMultiModalModel
from swarms.models.fire_function import FireFunctionCaller
from swarms.models.fuyu import Fuyu # noqa: E402 from swarms.models.fuyu import Fuyu # noqa: E402
from swarms.models.gpt4_vision_api import GPT4VisionAPI # noqa: E402 from swarms.models.gpt4_vision_api import GPT4VisionAPI # noqa: E402
from swarms.models.huggingface import HuggingfaceLLM # noqa: E402 from swarms.models.huggingface import HuggingfaceLLM # noqa: E402
@ -11,7 +10,6 @@ from swarms.models.layoutlm_document_qa import LayoutLMDocumentQA
from swarms.models.llava import LavaMultiModal # noqa: E402 from swarms.models.llava import LavaMultiModal # noqa: E402
from swarms.models.mistral import Mistral # noqa: E402 from swarms.models.mistral import Mistral # noqa: E402
from swarms.models.mixtral import Mixtral # noqa: E402 from swarms.models.mixtral import Mixtral # noqa: E402
from swarms.models.mpt import MPT7B # noqa: E402
from swarms.models.nougat import Nougat # noqa: E402 from swarms.models.nougat import Nougat # noqa: E402
from swarms.models.palm import GooglePalm as Palm # noqa: E402 from swarms.models.palm import GooglePalm as Palm # noqa: E402
from swarms.models.openai_tts import OpenAITTS # noqa: E402 from swarms.models.openai_tts import OpenAITTS # noqa: E402
@ -42,15 +40,12 @@ from swarms.models.types import ( # noqa: E402
) )
from swarms.models.vilt import Vilt # noqa: E402 from swarms.models.vilt import Vilt # noqa: E402
from swarms.models.openai_embeddings import OpenAIEmbeddings from swarms.models.openai_embeddings import OpenAIEmbeddings
from swarms.models.llama3_hosted import llama3Hosted
__all__ = [ __all__ = [
"BaseLLM",
"Anthropic",
"AzureOpenAI",
"BaseEmbeddingModel", "BaseEmbeddingModel",
"BaseLLM",
"BaseMultiModalModel", "BaseMultiModalModel",
"Cohere",
"FireFunctionCaller",
"Fuyu", "Fuyu",
"GPT4VisionAPI", "GPT4VisionAPI",
"HuggingfaceLLM", "HuggingfaceLLM",
@ -60,23 +55,26 @@ __all__ = [
"LavaMultiModal", "LavaMultiModal",
"Mistral", "Mistral",
"Mixtral", "Mixtral",
"MPT7B",
"Nougat", "Nougat",
"OpenAI", "Palm",
"OpenAIChat",
"OpenAIEmbeddings",
"OpenAITTS", "OpenAITTS",
"Anthropic",
"AzureOpenAI",
"Cohere",
"OpenAIChat",
"OpenAI",
"OctoAIChat", "OctoAIChat",
"Palm",
"QwenVLMultiModal", "QwenVLMultiModal",
"Replicate", "Replicate",
"SamplingParams", "SamplingParams",
"SamplingType", "SamplingType",
"TextModality", "TogetherLLM",
"MultimodalData",
"ImageModality",
"AudioModality", "AudioModality",
"ImageModality",
"MultimodalData",
"TextModality",
"VideoModality", "VideoModality",
"TogetherLLM",
"Vilt", "Vilt",
"OpenAIEmbeddings",
"llama3Hosted",
] ]

@ -0,0 +1,81 @@
import requests
import json
from swarms import BaseLLM
class llama3Hosted(BaseLLM):
"""
A class representing a hosted version of the Llama3 model.
Args:
model (str): The name or path of the Llama3 model to use.
temperature (float): The temperature parameter for generating responses.
max_tokens (int): The maximum number of tokens in the generated response.
system_prompt (str): The system prompt to use for generating responses.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Attributes:
model (str): The name or path of the Llama3 model.
temperature (float): The temperature parameter for generating responses.
max_tokens (int): The maximum number of tokens in the generated response.
system_prompt (str): The system prompt for generating responses.
Methods:
run(task, *args, **kwargs): Generates a response for the given task.
"""
def __init__(
self,
model: str = "meta-llama/Meta-Llama-3-8B-Instruct",
temperature: float = 0.8,
max_tokens: int = 4000,
system_prompt: str = "You are a helpful assistant.",
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.model = model
self.temperature = temperature
self.max_tokens = max_tokens
self.system_prompt = system_prompt
def run(self, task: str, *args, **kwargs) -> str:
"""
Generates a response for the given task.
Args:
task (str): The user's task or input.
Returns:
str: The generated response from the Llama3 model.
"""
url = "http://34.204.8.31:30001/v1/chat/completions"
payload = json.dumps(
{
"model": self.model,
"messages": [
{"role": "system", "content": self.system_prompt},
{"role": "user", "content": task},
],
"stop_token_ids": [128009, 128001],
"temperature": self.temperature,
"max_tokens": self.max_tokens,
}
)
headers = {"Content-Type": "application/json"}
response = requests.request(
"POST", url, headers=headers, data=payload
)
response_json = response.json()
assistant_message = response_json["choices"][0]["message"][
"content"
]
return assistant_message

@ -1,191 +0,0 @@
import logging
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
class MPT7B:
"""
MPT class for generating text using a pre-trained model.
Args:
model_name (str): Name of the model to use.
tokenizer_name (str): Name of the tokenizer to use.
max_tokens (int): Maximum number of tokens to generate.
Attributes:
model_name (str): Name of the model to use.
tokenizer_name (str): Name of the tokenizer to use.
tokenizer (transformers.AutoTokenizer): Tokenizer object.
model (transformers.AutoModelForCausalLM): Model object.
pipe (transformers.pipelines.TextGenerationPipeline): Text generation pipeline.
max_tokens (int): Maximum number of tokens to generate.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
"""
def __init__(
self,
model_name: str,
tokenizer_name: str,
max_tokens: int = 100,
):
# Loading model and tokenizer details
self.model_name = model_name
self.tokenizer_name = tokenizer_name
self.tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
# Setup logging
logging.basicConfig(level=logging.INFO)
self.logger = logging.getLogger(__name__)
config = AutoModelForCausalLM.from_pretrained(
model_name, trust_remote_code=True
).config
self.model = AutoModelForCausalLM.from_pretrained(
model_name, config=config, trust_remote_code=True
)
# Initializing a text-generation pipeline
self.pipe = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
device="cuda:0",
)
self.max_tokens = max_tokens
def run(self, task: str, *args, **kwargs) -> str:
"""
Run the model
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
if task == "generate":
return self.generate(*args, **kwargs)
else:
raise ValueError(f"Task '{task}' not recognized!")
async def run_async(self, task: str, *args, **kwargs) -> str:
"""
Run the model asynchronously
Args:
task (str): Task to run.
*args: Variable length argument list.
**kwargs: Arbitrary keyword arguments.
Examples:
>>> mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
>>> mpt_instance("generate", "Once upon a time in a land far, far away...")
'Once upon a time in a land far, far away...'
>>> mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7)
['In the deep jungles,',
'At the heart of the city,']
>>> mpt_instance.freeze_model()
>>> mpt_instance.unfreeze_model()
"""
# Wrapping synchronous calls with async
return self.run(task, *args, **kwargs)
def generate(self, prompt: str) -> str:
"""
Generate Text
Args:
prompt (str): Prompt to generate text from.
Examples:
"""
with torch.autocast("cuda", dtype=torch.bfloat16):
return self.pipe(
prompt,
max_new_tokens=self.max_tokens,
do_sample=True,
use_cache=True,
)[0]["generated_text"]
async def generate_async(self, prompt: str) -> str:
"""Generate Async"""
return self.generate(prompt)
def __call__(self, task: str, *args, **kwargs) -> str:
"""Call the model"""
return self.run(task, *args, **kwargs)
async def __call_async__(self, task: str, *args, **kwargs) -> str:
"""Call the model asynchronously""" ""
return await self.run_async(task, *args, **kwargs)
def batch_generate(
self, prompts: list, temperature: float = 1.0
) -> list:
"""Batch generate text"""
self.logger.info(f"Generating text for {len(prompts)} prompts...")
results = []
with torch.autocast("cuda", dtype=torch.bfloat16):
for prompt in prompts:
result = self.pipe(
prompt,
max_new_tokens=self.max_tokens,
do_sample=True,
use_cache=True,
temperature=temperature,
)
results.append(result[0]["generated_text"])
return results
def unfreeze_model(self):
"""Unfreeze the model"""
for param in self.model.parameters():
param.requires_grad = True
self.logger.info("Model has been unfrozen.")
# # Example usage:
# mpt_instance = MPT(
# "mosaicml/mpt-7b-storywriter", "EleutherAI/gpt-neox-20b", max_tokens=150
# )
# # For synchronous calls
# print(mpt_instance("generate", "Once upon a time in a land far, far away..."))
# For asynchronous calls, use an event loop or similar async framework
# For example:
# # import asyncio
# # asyncio.run(mpt_instance.__call_async__("generate", "Once upon a time in a land far, far away..."))
# # Example usage:
# mpt_instance = MPT('mosaicml/mpt-7b-storywriter', "EleutherAI/gpt-neox-20b", max_tokens=150)
# # For synchronous calls
# print(mpt_instance("generate", "Once upon a time in a land far, far away..."))
# print(mpt_instance.batch_generate(["In the deep jungles,", "At the heart of the city,"], temperature=0.7))
# # Freezing and unfreezing the model
# mpt_instance.freeze_model()
# mpt_instance.unfreeze_model()

@ -60,7 +60,7 @@ class Nougat:
img = img.convert("RGB") img = img.convert("RGB")
return img return img
def __call__(self, img: str): def __call__(self, img: str, *args, **kwargs):
"""Call the model with an image_path str as an input""" """Call the model with an image_path str as an input"""
image = Image.open(img) image = Image.open(img)
pixel_values = self.processor( pixel_values = self.processor(
@ -72,6 +72,8 @@ class Nougat:
pixel_values.to(self.device), pixel_values.to(self.device),
min_length=self.min_length, min_length=self.min_length,
max_new_tokens=self.max_new_tokens, max_new_tokens=self.max_new_tokens,
*args,
**kwargs,
) )
sequence = self.processor.batch_decode( sequence = self.processor.batch_decode(

@ -50,7 +50,7 @@ class SAM:
self.processor = SamProcessor.from_pretrained(model_name) self.processor = SamProcessor.from_pretrained(model_name)
def run(self, task=None, img=None, *args, **kwargs): def run(self, task: str = None, img: str = None, *args, **kwargs):
""" """
Runs the SAM model on the given image and returns the segmentation scores and masks. Runs the SAM model on the given image and returns the segmentation scores and masks.

@ -1,167 +0,0 @@
import base64
import os
import shutil
import uuid
from typing import List
import requests
from dotenv import load_dotenv
load_dotenv()
stable_api_key = os.environ.get("STABLE_API_KEY")
class StableDiffusion:
"""
A class to interact with the Stable Diffusion API for generating images from text prompts.
Attributes:
-----------
api_key : str
The API key for accessing the Stable Diffusion API.
api_host : str
The host URL for the Stable Diffusion API.
engine_id : str
The engine ID for the Stable Diffusion API.
cfg_scale : int
Configuration scale for image generation.
height : int
The height of the generated image.
width : int
The width of the generated image.
samples : int
The number of samples to generate.
steps : int
The number of steps for the generation process.
output_dir : str
Directory where the generated images will be saved.
Methods:
--------
__init__(self, api_key: str, api_host: str, cfg_scale: int, height: int, width: int, samples: int, steps: int):
Initializes the StableDiffusion instance with provided parameters.
generate_image(self, task: str) -> List[str]:
Generates an image based on the provided text prompt and returns the paths of the saved images.
"""
def __init__(
self,
api_key: str = stable_api_key,
api_host: str = "https://api.stability.ai",
cfg_scale: int = 7,
height: int = 1024,
width: int = 1024,
samples: int = 1,
steps: int = 30,
):
"""
Initialize the StableDiffusion class with API configurations.
Parameters:
-----------
api_key : str
The API key for accessing the Stable Diffusion API.
api_host : str
The host URL for the Stable Diffusion API.
cfg_scale : int
Configuration scale for image generation.
height : int
The height of the generated image.
width : int
The width of the generated image.
samples : int
The number of samples to generate.
steps : int
The number of steps for the generation process.
"""
self.api_key = api_key
self.api_host = api_host
self.engine_id = "stable-diffusion-v1-6"
self.cfg_scale = cfg_scale
self.height = height
self.width = width
self.samples = samples
self.steps = steps
self.headers = {
"Authorization": f"Bearer {self.api_key}",
"Content-Type": "application/json",
"Accept": "application/json",
}
self.output_dir = "images"
os.makedirs(self.output_dir, exist_ok=True)
def run(self, task: str) -> List[str]:
"""
Generates an image based on a given text prompt.
Parameters:
-----------
task : str
The text prompt based on which the image will be generated.
Returns:
--------
List[str]:
A list of file paths where the generated images are saved.
Raises:
-------
Exception:
If the API request fails and returns a non-200 response.
"""
response = requests.post(
f"{self.api_host}/v1/generation/{self.engine_id}/text-to-image",
headers=self.headers,
json={
"text_prompts": [{"text": task}],
"cfg_scale": self.cfg_scale,
"height": self.height,
"width": self.width,
"samples": self.samples,
"steps": self.steps,
},
)
if response.status_code != 200:
raise Exception(f"Non-200 response: {response.text}")
data = response.json()
image_paths = []
for i, image in enumerate(data["artifacts"]):
unique_id = uuid.uuid4() # Generate a unique identifier
image_path = os.path.join(
self.output_dir, f"{unique_id}_v1_txt2img_{i}.png"
)
with open(image_path, "wb") as f:
f.write(base64.b64decode(image["base64"]))
image_paths.append(image_path)
return image_paths
def generate_and_move_image(self, prompt, iteration, folder_path):
"""
Generates an image based on the given prompt and moves it to the specified folder.
Args:
prompt (str): The prompt used to generate the image.
iteration (int): The iteration number.
folder_path (str): The path to the folder where the image will be moved.
Returns:
str: The path of the moved image.
"""
# Generate the image
image_paths = self.run(prompt)
if not image_paths:
return None
# Move the image to the specified folder
src_image_path = image_paths[0]
dst_image_path = os.path.join(
folder_path, f"image_{iteration}.jpg"
)
shutil.move(src_image_path, dst_image_path)
return dst_image_path

@ -1,62 +0,0 @@
from typing import List
import timm
import torch
from torch import Tensor
from swarms.models.base_multimodal_model import BaseMultiModalModel
class TimmModel(BaseMultiModalModel):
"""
TimmModel is a class that wraps the timm library to provide a consistent
interface for creating and running models.
Args:
model_name: A string representing the name of the model to be created.
pretrained: A boolean indicating whether to use a pretrained model.
in_chans: An integer representing the number of input channels.
Returns:
A TimmModel instance.
Example:
model = TimmModel('resnet18', pretrained=True, in_chans=3)
output_shape = model(input_tensor)
"""
def __init__(
self,
model_name: str,
pretrained: bool,
in_chans: int,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.model_name = model_name
self.pretrained = pretrained
self.in_chans = in_chans
self.models = self._get_supported_models()
def _get_supported_models(self) -> List[str]:
"""Retrieve the list of supported models from timm."""
return timm.list_models()
def __call__(self, task: Tensor, *args, **kwargs) -> torch.Size:
"""
Create and run a model specified by `model_info` on `input_tensor`.
Args:
model_info: An instance of TimmModelInfo containing model specifications.
input_tensor: A torch tensor representing the input data.
Returns:
The shape of the output from the model.
"""
model = timm.create_model(self.model_name, *args, **kwargs)
return model(task)
def list_models(self):
return timm.list_models()

@ -63,9 +63,7 @@ class ZeroscopeTTV:
self.num_frames = num_frames self.num_frames = num_frames
self.pipe = DiffusionPipeline.from_pretrained( self.pipe = DiffusionPipeline.from_pretrained(
model_name, model_name, torch_dtype=torch_dtype, *args, **kwargs
torch_dtype=torch_dtype,
*args,
) )
self.pipe.scheduler = DPMSolverMultistepScheduler( self.pipe.scheduler = DPMSolverMultistepScheduler(
self.pipe.scheduler.config, self.pipe.scheduler.config,

@ -12,7 +12,7 @@ def DOCUMENTATION_WRITER_SOP(
BE VERY EXPLICIT AND THOROUGH, MAKE IT DEEP AND USEFUL BE VERY EXPLICIT AND THOROUGH, MAKE IT DEEP AND USEFUL
######## ######## INSTRUCTIONS ########
Step 1: Understand the purpose and functionality of the module or framework Step 1: Understand the purpose and functionality of the module or framework
Read and analyze the description provided in the documentation to understand the purpose and functionality of the module or framework. Read and analyze the description provided in the documentation to understand the purpose and functionality of the module or framework.
@ -43,6 +43,7 @@ def DOCUMENTATION_WRITER_SOP(
Provide links to relevant documentation or websites for further exploration. Provide links to relevant documentation or websites for further exploration.
Example Template for the given documentation: Example Template for the given documentation:
################################### EXAMPLE #####################################
# Module/Function Name: MultiheadAttention # Module/Function Name: MultiheadAttention
class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None): class torch.nn.MultiheadAttention(embed_dim, num_heads, dropout=0.0, bias=True, add_bias_kv=False, add_zero_attn=False, kdim=None, vdim=None, batch_first=False, device=None, dtype=None):

@ -1,9 +1,10 @@
import datetime import datetime
from typing import List
from pydantic import BaseModel, Field from pydantic import BaseModel, Field
from swarms.tools.base_tool import BaseTool from swarms.tools.base_tool import BaseTool
from swarms.tools.tool_utils import scrape_tool_func_docs from swarms.tools.tool_utils import scrape_tool_func_docs
from typing import List
from swarms.tools.base_tool import BaseTool
time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S") time = datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S")

@ -0,0 +1,132 @@
import json
from typing import List
from beartype import beartype
from swarms.structs.agent import Agent
from swarms.structs.base_swarm import BaseSwarm
from swarms.utils.loguru_logger import logger
class HiearchicalSwarm(BaseSwarm):
@beartype
def __init__(
self,
director: Agent = None,
agents: List[Agent] = None,
max_loops: int = 1,
long_term_memory_system: BaseSwarm = None,
*args,
**kwargs,
):
super().__init__(*args, **kwargs)
self.director = director
self.agents = agents
self.max_loops = max_loops
self.long_term_memory_system = long_term_memory_system
# Set the director to max_one loop
self.director.max_loops = 1
# Set the long term memory system of every agent to long term memory system
if long_term_memory_system is True:
for agent in agents:
agent.long_term_memory = long_term_memory_system
def parse_function_activate_agent(
self, json_data: str = None, *args, **kwargs
):
"""
Parse the JSON data and activate the selected agent.
Args:
json_data (str): The JSON data containing the agent name and task.
Returns:
str: The response from the activated agent.
Raises:
json.JSONDecodeError: If the JSON data is invalid.
"""
try:
data = json.loads(json_data)
name = data.get("name")
task = data.get("task")
response = self.select_agent_and_send_task(
name, task, *args, **kwargs
)
return response
except json.JSONDecodeError:
logger.error("Invalid JSON data, try again.")
raise json.JSONDecodeError
@beartype
def select_agent_and_send_task(
self, name: str = None, task: str = None, *args, **kwargs
):
"""
Select an agent from the list and send a task to them.
Args:
name (str): The name of the agent to send the task to.
task (str): The task to send to the agent.
Returns:
str: The response from the agent.
Raises:
KeyError: If the agent name is not found in the list of agents.
"""
try:
# Check to see if the agent name is in the list of agents
if name in self.agents:
agent = self.agents[name]
else:
return "Invalid agent name. Please select 'Account Management Agent' or 'Product Support Agent'."
response = agent.run(task, *args, **kwargs)
return response
except Exception as e:
logger.error(f"Error: {e}")
raise e
@beartype
def run(self, task: str = None, *args, **kwargs):
"""
Run the hierarchical swarm.
Args:
task (str): The task to send to the director agent.
Returns:
str: The response from the director agent.
Raises:
Exception: If an error occurs while running the swarm.
"""
try:
loop = 0
# While the loop is less than max loops
while loop < self.max_loops:
# Run the director
response = self.director.run(task, *args, **kwargs)
# Run agents
response = self.parse_function_activate_agent(response)
loop += 1
return response
except Exception as e:
logger.error(f"Error: {e}")
raise e
Loading…
Cancel
Save