pull/475/head
Kye Gomez 8 months ago
parent 612beb4df3
commit 36a092f6e6

@ -3,28 +3,12 @@ import random
from typing import List
import tenacity
from langchain.output_parsers import RegexParser
from swarms.structs.agent import Agent
from swarms.utils.logger import logger
from swarms.structs.base_swarm import BaseSwarm
# utils
class BidOutputParser(RegexParser):
def get_format_instructions(self) -> str:
return (
"Your response should be an integrater delimited by"
" angled brackets like this: <int>"
)
bid_parser = BidOutputParser(
regex=r"<(\d+)>", output_keys=["bid"], default_output_key="bid"
)
# main
# [TODO]: Add type hints
class MultiAgentCollaboration(BaseSwarm):
"""
Multi-agent collaboration class.
@ -88,8 +72,11 @@ class MultiAgentCollaboration(BaseSwarm):
def __init__(
self,
agents: List[Agent],
selection_function: callable = None,
name: str = "MultiAgentCollaboration",
description: str = "A multi-agent collaboration.",
director: Agent = None,
agents: List[Agent] = None,
select_next_speaker: callable = None,
max_iters: int = 10,
autosave: bool = True,
saved_file_path_name: str = "multi_agent_collab.json",
@ -99,8 +86,11 @@ class MultiAgentCollaboration(BaseSwarm):
**kwargs,
):
super().__init__(*args, **kwargs)
self.name = name
self.description = description
self.director = director
self.agents = agents
self.select_next_speaker = selection_function
self.select_next_speaker = select_next_speaker
self._step = 0
self.max_iters = max_iters
self.autosave = autosave
@ -121,7 +111,6 @@ class MultiAgentCollaboration(BaseSwarm):
speaker_idx = self.select_next_speaker(self._step, self.agents)
speaker = self.agents[speaker_idx]
message = speaker.send()
message = speaker.send()
for receiver in self.agents:
receiver.receive(speaker.name, message)
@ -146,16 +135,10 @@ class MultiAgentCollaboration(BaseSwarm):
),
retry_error_callback=lambda retry_state: 0,
)
def ask_for_bid(self, agent) -> str:
"""Asks an agent for a bid."""
bid_string = agent.bid()
bid = int(bid_parser.parse(bid_string)["bid"])
return bid
def select_next_speaker(
def select_next_speaker_bid(
self,
step: int,
agents,
agents: List[Agent],
) -> int:
"""Selects the next speaker."""
bids = []
@ -208,11 +191,14 @@ class MultiAgentCollaboration(BaseSwarm):
idx = director.select_next_speaker() + 1
return idx
def run(self, task: str):
def run(self, task: str, *args, **kwargs):
# [TODO]: Add type hints
# [TODO]: Implement the run method using step method
conversation = task
for _ in range(self.max_iters):
for agent in self.agents:
result = agent.run(conversation)
result = agent.run(conversation, *args, **kwargs)
self.results.append({"agent": agent, "response": result})
conversation += result

@ -0,0 +1,315 @@
import random
from threading import Lock
from time import sleep
from typing import Callable, List, Optional
from swarms import Agent
from swarms.structs.base_swarm import BaseSwarm
from swarms.utils.loguru_logger import logger
class AgentLoadBalancer(BaseSwarm):
"""
A load balancer class that distributes tasks among a group of agents.
Args:
agents (List[Agent]): The list of agents available for task execution.
max_retries (int, optional): The maximum number of retries for a task if it fails. Defaults to 3.
max_loops (int, optional): The maximum number of loops to run a task. Defaults to 5.
cooldown_time (float, optional): The cooldown time between retries. Defaults to 0.
Attributes:
agents (List[Agent]): The list of agents available for task execution.
agent_status (Dict[str, bool]): The status of each agent, indicating whether it is available or not.
max_retries (int): The maximum number of retries for a task if it fails.
max_loops (int): The maximum number of loops to run a task.
agent_performance (Dict[str, Dict[str, int]]): The performance statistics of each agent.
lock (Lock): A lock to ensure thread safety.
cooldown_time (float): The cooldown time between retries.
Methods:
get_available_agent: Get an available agent for task execution.
set_agent_status: Set the status of an agent.
update_performance: Update the performance statistics of an agent.
log_performance: Log the performance statistics of all agents.
run_task: Run a single task using an available agent.
run_multiple_tasks: Run multiple tasks using available agents.
run_task_with_loops: Run a task multiple times using an available agent.
run_task_with_callback: Run a task with a callback function.
run_task_with_timeout: Run a task with a timeout.
"""
def __init__(
self,
agents: List[Agent],
max_retries: int = 3,
max_loops: int = 5,
cooldown_time: float = 0,
):
self.agents = agents
self.agent_status = {agent.agent_name: True for agent in agents}
self.max_retries = max_retries
self.max_loops = max_loops
self.agent_performance = {
agent.agent_name: {"success_count": 0, "failure_count": 0}
for agent in agents
}
self.lock = Lock()
self.cooldown_time = cooldown_time
def get_available_agent(self) -> Optional[Agent]:
"""
Get an available agent for task execution.
Returns:
Optional[Agent]: An available agent, or None if no agents are available.
"""
with self.lock:
available_agents = [
agent
for agent in self.agents
if self.agent_status[agent.agent_name]
]
if not available_agents:
return None
return random.choice(available_agents)
def set_agent_status(self, agent: Agent, status: bool) -> None:
"""
Set the status of an agent.
Args:
agent (Agent): The agent whose status needs to be set.
status (bool): The status to set for the agent.
"""
with self.lock:
self.agent_status[agent.agent_name] = status
def update_performance(self, agent: Agent, success: bool) -> None:
"""
Update the performance statistics of an agent.
Args:
agent (Agent): The agent whose performance statistics need to be updated.
success (bool): Whether the task executed by the agent was successful or not.
"""
with self.lock:
if success:
self.agent_performance[agent.agent_name][
"success_count"
] += 1
else:
self.agent_performance[agent.agent_name][
"failure_count"
] += 1
def log_performance(self) -> None:
"""
Log the performance statistics of all agents.
"""
logger.info("Agent Performance:")
for agent_name, stats in self.agent_performance.items():
logger.info(f"{agent_name}: {stats}")
def run_task(self, task: str, *args, **kwargs) -> str:
"""
Run a single task using an available agent.
Args:
task (str): The task to be executed.
Returns:
str: The output of the task execution.
Raises:
RuntimeError: If no available agents are found to handle the request.
"""
try:
retries = 0
while retries < self.max_retries:
agent = self.get_available_agent()
if not agent:
raise RuntimeError(
"No available agents to handle the request."
)
try:
self.set_agent_status(agent, False)
output = agent.run(task, *args, **kwargs)
self.update_performance(agent, True)
return output
except Exception as e:
logger.error(
f"Error with agent {agent.agent_name}: {e}"
)
self.update_performance(agent, False)
retries += 1
sleep(self.cooldown_time)
if retries >= self.max_retries:
raise e
finally:
self.set_agent_status(agent, True)
except Exception as e:
logger.error(
f"Task failed: {e} try again by optimizing the code."
)
raise RuntimeError(f"Task failed: {e}")
def run_multiple_tasks(self, tasks: List[str]) -> List[str]:
"""
Run multiple tasks using available agents.
Args:
tasks (List[str]): The list of tasks to be executed.
Returns:
List[str]: The list of outputs corresponding to each task execution.
"""
results = []
for task in tasks:
result = self.run_task(task)
results.append(result)
return results
def run_task_with_loops(self, task: str) -> List[str]:
"""
Run a task multiple times using an available agent.
Args:
task (str): The task to be executed.
Returns:
List[str]: The list of outputs corresponding to each task execution.
"""
results = []
for _ in range(self.max_loops):
result = self.run_task(task)
results.append(result)
return results
def run_task_with_callback(
self, task: str, callback: Callable[[str], None]
) -> None:
"""
Run a task with a callback function.
Args:
task (str): The task to be executed.
callback (Callable[[str], None]): The callback function to be called with the task result.
"""
try:
result = self.run_task(task)
callback(result)
except Exception as e:
logger.error(f"Task failed: {e}")
callback(str(e))
def run_task_with_timeout(self, task: str, timeout: float) -> str:
"""
Run a task with a timeout.
Args:
task (str): The task to be executed.
timeout (float): The maximum time (in seconds) to wait for the task to complete.
Returns:
str: The output of the task execution.
Raises:
TimeoutError: If the task execution exceeds the specified timeout.
Exception: If the task execution raises an exception.
"""
import threading
result = [None]
exception = [None]
def target():
try:
result[0] = self.run_task(task)
except Exception as e:
exception[0] = e
thread = threading.Thread(target=target)
thread.start()
thread.join(timeout)
if thread.is_alive():
raise TimeoutError(f"Task timed out after {timeout} seconds.")
if exception[0]:
raise exception[0]
return result[0]
# if __name__ == "__main__":
# from swarms import llama3Hosted()
# # User initializes the agents
# agents = [
# Agent(
# agent_name="Transcript Generator 1",
# agent_description="Generate a transcript for a youtube video on what swarms are!",
# llm=llama3Hosted(),
# max_loops="auto",
# autosave=True,
# dashboard=False,
# streaming_on=True,
# verbose=True,
# stopping_token="<DONE>",
# interactive=True,
# state_save_file_type="json",
# saved_state_path="transcript_generator_1.json",
# ),
# Agent(
# agent_name="Transcript Generator 2",
# agent_description="Generate a transcript for a youtube video on what swarms are!",
# llm=llama3Hosted(),
# max_loops="auto",
# autosave=True,
# dashboard=False,
# streaming_on=True,
# verbose=True,
# stopping_token="<DONE>",
# interactive=True,
# state_save_file_type="json",
# saved_state_path="transcript_generator_2.json",
# )
# # Add more agents as needed
# ]
# load_balancer = LoadBalancer(agents)
# try:
# result = load_balancer.run_task("Generate a transcript for a youtube video on what swarms are!")
# print(result)
# # Running multiple tasks
# tasks = [
# "Generate a transcript for a youtube video on what swarms are!",
# "Generate a transcript for a youtube video on AI advancements!"
# ]
# results = load_balancer.run_multiple_tasks(tasks)
# for res in results:
# print(res)
# # Running task with loops
# loop_results = load_balancer.run_task_with_loops("Generate a transcript for a youtube video on what swarms are!")
# for res in loop_results:
# print(res)
# except RuntimeError as e:
# print(f"Error: {e}")
# # Log performance
# load_balancer.log_performance()

@ -1,59 +0,0 @@
from unittest.mock import MagicMock, patch
import pytest
from swarms.agents.multion_agent import MultiOnAgent
@patch("swarms.agents.multion_agent.multion")
def test_multion_agent_run(mock_multion):
mock_response = MagicMock()
mock_response.result = "result"
mock_response.status = "status"
mock_response.lastUrl = "lastUrl"
mock_multion.browse.return_value = mock_response
agent = MultiOnAgent(
multion_api_key="test_key",
max_steps=5,
starting_url="https://www.example.com",
)
result, status, last_url = agent.run("task")
assert result == "result"
assert status == "status"
assert last_url == "lastUrl"
mock_multion.browse.assert_called_once_with(
{
"cmd": "task",
"url": "https://www.example.com",
"maxSteps": 5,
}
)
# Additional tests for different tasks
@pytest.mark.parametrize(
"task", ["task1", "task2", "task3", "task4", "task5"]
)
@patch("swarms.agents.multion_agent.multion")
def test_multion_agent_run_different_tasks(mock_multion, task):
mock_response = MagicMock()
mock_response.result = "result"
mock_response.status = "status"
mock_response.lastUrl = "lastUrl"
mock_multion.browse.return_value = mock_response
agent = MultiOnAgent(
multion_api_key="test_key",
max_steps=5,
starting_url="https://www.example.com",
)
result, status, last_url = agent.run(task)
assert result == "result"
assert status == "status"
assert last_url == "lastUrl"
mock_multion.browse.assert_called_once_with(
{"cmd": task, "url": "https://www.example.com", "maxSteps": 5}
)

@ -1,276 +0,0 @@
import os
from unittest.mock import MagicMock, patch
import pytest
from dotenv import load_dotenv
from swarms.models import OpenAIChat
from swarms.structs import Agent
from swarms.structs.autoscaler import AutoScaler
load_dotenv()
api_key = os.environ.get("OPENAI_API_KEY")
llm = OpenAIChat(
temperature=0.5,
openai_api_key=api_key,
)
agent = Agent(llm=llm, max_loops=1)
def test_autoscaler_init():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
assert autoscaler.initial_agents == 5
assert autoscaler.scale_up_factor == 1
assert autoscaler.idle_threshold == 0.2
assert autoscaler.busy_threshold == 0.7
assert autoscaler.autoscale is True
assert autoscaler.min_agents == 1
assert autoscaler.max_agents == 5
assert autoscaler.custom_scale_strategy is None
assert len(autoscaler.agents_pool) == 5
assert autoscaler.task_queue.empty() is True
def test_autoscaler_add_task():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
assert autoscaler.task_queue.empty() is False
def test_autoscaler_run():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
out = autoscaler.run(
agent.id,
"Generate a 10,000 word blog on health and wellness.",
)
assert out == "Generate a 10,000 word blog on health and wellness."
def test_autoscaler_add_agent():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_agent(agent)
assert len(autoscaler.agents_pool) == 6
def test_autoscaler_remove_agent():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.remove_agent(agent)
assert len(autoscaler.agents_pool) == 4
def test_autoscaler_get_agent():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
agent = autoscaler.get_agent()
assert isinstance(agent, Agent)
def test_autoscaler_get_agent_by_id():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
agent = autoscaler.get_agent_by_id(agent.id)
assert isinstance(agent, Agent)
def test_autoscaler_get_agent_by_id_not_found():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
agent = autoscaler.get_agent_by_id("fake_id")
assert agent is None
@patch("swarms.swarms.Agent.is_healthy")
def test_autoscaler_check_agent_health(mock_is_healthy):
mock_is_healthy.side_effect = [False, True, True, True, True]
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.check_agent_health()
assert mock_is_healthy.call_count == 5
def test_autoscaler_balance_load():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.add_task("task2")
autoscaler.balance_load()
assert autoscaler.task_queue.empty()
def test_autoscaler_set_scaling_strategy():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
def strategy(x, y):
return x - y
autoscaler.set_scaling_strategy(strategy)
assert autoscaler.custom_scale_strategy == strategy
def test_autoscaler_execute_scaling_strategy():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
def strategy(x, y):
return x - y
autoscaler.set_scaling_strategy(strategy)
autoscaler.add_task("task1")
autoscaler.execute_scaling_strategy()
assert len(autoscaler.agents_pool) == 4
def test_autoscaler_report_agent_metrics():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
metrics = autoscaler.report_agent_metrics()
assert set(metrics.keys()) == {
"completion_time",
"success_rate",
"error_rate",
}
@patch("swarms.swarms.AutoScaler.report_agent_metrics")
def test_autoscaler_report(mock_report_agent_metrics):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.report()
mock_report_agent_metrics.assert_called_once()
@patch("builtins.print")
def test_autoscaler_print_dashboard(mock_print):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.print_dashboard()
mock_print.assert_called()
@patch("swarms.structs.autoscaler.logging")
def test_check_agent_health_all_healthy(mock_logging):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
for agent in autoscaler.agents_pool:
agent.is_healthy = MagicMock(return_value=True)
autoscaler.check_agent_health()
mock_logging.warning.assert_not_called()
@patch("swarms.structs.autoscaler.logging")
def test_check_agent_health_some_unhealthy(mock_logging):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
for i, agent in enumerate(autoscaler.agents_pool):
agent.is_healthy = MagicMock(return_value=(i % 2 == 0))
autoscaler.check_agent_health()
assert mock_logging.warning.call_count == 2
@patch("swarms.structs.autoscaler.logging")
def test_check_agent_health_all_unhealthy(mock_logging):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
for agent in autoscaler.agents_pool:
agent.is_healthy = MagicMock(return_value=False)
autoscaler.check_agent_health()
assert mock_logging.warning.call_count == 5
@patch("swarms.structs.autoscaler.Agent")
def test_add_agent(mock_agent):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
initial_count = len(autoscaler.agents_pool)
autoscaler.add_agent()
assert len(autoscaler.agents_pool) == initial_count + 1
mock_agent.assert_called_once()
@patch("swarms.structs.autoscaler.Agent")
def test_remove_agent(mock_agent):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
initial_count = len(autoscaler.agents_pool)
autoscaler.remove_agent()
assert len(autoscaler.agents_pool) == initial_count - 1
@patch("swarms.structs.autoscaler.AutoScaler.add_agent")
@patch("swarms.structs.autoscaler.AutoScaler.remove_agent")
def test_scale(mock_remove_agent, mock_add_agent):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.scale(10)
assert mock_add_agent.call_count == 5
assert mock_remove_agent.call_count == 0
mock_add_agent.reset_mock()
mock_remove_agent.reset_mock()
autoscaler.scale(3)
assert mock_add_agent.call_count == 0
assert mock_remove_agent.call_count == 2
def test_add_task_success():
autoscaler = AutoScaler(initial_agents=5)
initial_queue_size = autoscaler.task_queue.qsize()
autoscaler.add_task("test_task")
assert autoscaler.task_queue.qsize() == initial_queue_size + 1
@patch("swarms.structs.autoscaler.queue.Queue.put")
def test_add_task_exception(mock_put):
mock_put.side_effect = Exception("test error")
autoscaler = AutoScaler(initial_agents=5)
with pytest.raises(Exception) as e:
autoscaler.add_task("test_task")
assert str(e.value) == "test error"
def test_autoscaler_initialization():
autoscaler = AutoScaler(
initial_agents=5,
scale_up_factor=2,
idle_threshold=0.1,
busy_threshold=0.8,
agent=agent,
)
assert isinstance(autoscaler, AutoScaler)
assert autoscaler.scale_up_factor == 2
assert autoscaler.idle_threshold == 0.1
assert autoscaler.busy_threshold == 0.8
assert len(autoscaler.agents_pool) == 5
def test_autoscaler_add_task():
autoscaler = AutoScaler(agent=agent)
autoscaler.add_task("task1")
assert autoscaler.task_queue.qsize() == 1
def test_autoscaler_scale_up():
autoscaler = AutoScaler(
initial_agents=5, scale_up_factor=2, agent=agent
)
autoscaler.scale_up()
assert len(autoscaler.agents_pool) == 10
def test_autoscaler_scale_down():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.scale_down()
assert len(autoscaler.agents_pool) == 4
@patch("swarms.swarms.AutoScaler.scale_up")
@patch("swarms.swarms.AutoScaler.scale_down")
def test_autoscaler_monitor_and_scale(mock_scale_down, mock_scale_up):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.monitor_and_scale()
mock_scale_up.assert_called_once()
mock_scale_down.assert_called_once()
@patch("swarms.swarms.AutoScaler.monitor_and_scale")
@patch("swarms.swarms.agent.run")
def test_autoscaler_start(mock_run, mock_monitor_and_scale):
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.add_task("task1")
autoscaler.start()
mock_run.assert_called_once()
mock_monitor_and_scale.assert_called_once()
def test_autoscaler_del_agent():
autoscaler = AutoScaler(initial_agents=5, agent=agent)
autoscaler.del_agent()
assert len(autoscaler.agents_pool) == 4

@ -1,72 +0,0 @@
import pytest
from swarms.structs.graph_workflow import GraphWorkflow
@pytest.fixture
def graph_workflow():
return GraphWorkflow()
def test_init(graph_workflow):
assert graph_workflow.graph == {}
assert graph_workflow.entry_point is None
def test_add(graph_workflow):
graph_workflow.add("node1", "value1")
assert "node1" in graph_workflow.graph
assert graph_workflow.graph["node1"]["value"] == "value1"
assert graph_workflow.graph["node1"]["edges"] == {}
def test_set_entry_point(graph_workflow):
graph_workflow.add("node1", "value1")
graph_workflow.set_entry_point("node1")
assert graph_workflow.entry_point == "node1"
def test_set_entry_point_nonexistent_node(graph_workflow):
with pytest.raises(ValueError, match="Node does not exist in graph"):
graph_workflow.set_entry_point("nonexistent")
def test_add_edge(graph_workflow):
graph_workflow.add("node1", "value1")
graph_workflow.add("node2", "value2")
graph_workflow.add_edge("node1", "node2")
assert "node2" in graph_workflow.graph["node1"]["edges"]
def test_add_edge_nonexistent_node(graph_workflow):
graph_workflow.add("node1", "value1")
with pytest.raises(ValueError, match="Node does not exist in graph"):
graph_workflow.add_edge("node1", "nonexistent")
def test_add_conditional_edges(graph_workflow):
graph_workflow.add("node1", "value1")
graph_workflow.add("node2", "value2")
graph_workflow.add_conditional_edges(
"node1", "condition1", {"condition_value1": "node2"}
)
assert "node2" in graph_workflow.graph["node1"]["edges"]
def test_add_conditional_edges_nonexistent_node(graph_workflow):
graph_workflow.add("node1", "value1")
with pytest.raises(ValueError, match="Node does not exist in graph"):
graph_workflow.add_conditional_edges(
"node1", "condition1", {"condition_value1": "nonexistent"}
)
def test_run(graph_workflow):
graph_workflow.add("node1", "value1")
graph_workflow.set_entry_point("node1")
assert graph_workflow.run() == graph_workflow.graph
def test_run_no_entry_point(graph_workflow):
with pytest.raises(ValueError, match="Entry point not set"):
graph_workflow.run()
Loading…
Cancel
Save