dynamic max loops, + gpt4clean up

pull/128/head
Kye 1 year ago
parent 1dc1e8f270
commit 371da7944e

@ -39,7 +39,9 @@ Book a [1-on-1 Session with Kye](https://calendly.com/swarm-corp/30min), the Cre
We have a small gallery of examples to run here, [for more check out the docs to build your own agent and or swarms!](https://docs.apac.ai) We have a small gallery of examples to run here, [for more check out the docs to build your own agent and or swarms!](https://docs.apac.ai)
### `Flow` Example ### `Flow` Example
- The `Flow` is a superior iteratioin of the `LLMChain` from Langchain, our intent with `Flow` is to create the most reliable loop structure that gives the agents their "autonomy" through 3 main methods of interaction, one through user specified loops, then dynamic where the agent parses a <DONE> token, and or an interactive human input verison, or a mix of all 3. - Reliable Structure that provides LLMS autonomy
- Extremely Customizeable with stopping conditions, interactivity, dynamical temperature, loop intervals, and so much more
- Enterprise Grade + Production Grade: `Flow` is designed and optimized for automating real-world tasks at scale!
```python ```python
@ -86,9 +88,10 @@ out = flow.run("Generate a 10,000 word blog on health and wellness.")
------ ------
### `SequentialWorkflow` ### `SequentialWorkflow`
- Execute tasks step by step by passing in an LLM and the task description! - A Sequential swarm of autonomous agents where each agent's outputs are fed into the next agent
- Pass in flows with various LLMs - Save and Restore Workflow states!
- Save and restore Workflow states! - Integrate Flow's with various LLMs and Multi-Modality Models
```python ```python
from swarms.models import OpenAIChat from swarms.models import OpenAIChat
from swarms.structs import Flow from swarms.structs import Flow
@ -130,7 +133,6 @@ for task in workflow.tasks:
``` ```
--- ---
## Documentation ## Documentation
@ -140,6 +142,9 @@ for task in workflow.tasks:
## Contribute ## Contribute
- We're always looking for contributors to help us improve and expand this project. If you're interested, please check out our [Contributing Guidelines](CONTRIBUTING.md) and our [contributing board](https://github.com/users/kyegomez/projects/1) - We're always looking for contributors to help us improve and expand this project. If you're interested, please check out our [Contributing Guidelines](CONTRIBUTING.md) and our [contributing board](https://github.com/users/kyegomez/projects/1)
## Community
- [Join the Swarms community here on Discord!](https://discord.gg/AJazBmhKnr)
# License # License
MIT MIT

@ -0,0 +1,5 @@
"""
Autonomous swarm that optimizes UI autonomously
GPT4Vision ->> GPT4 ->> UI
"""

@ -0,0 +1,15 @@
from swarms.models.gpt4v import GPT4Vision
api_key = ""
gpt4vision = GPT4Vision(
openai_api_key=api_key,
)
img = "https://upload.wikimedia.org/wikipedia/commons/thumb/0/0d/VFPt_Solenoid_correct2.svg/640px-VFPt_Solenoid_correct2.svg.png"
task = "What is this image"
answer = gpt4vision.run(task, img)
print(answer)

@ -4,7 +4,7 @@ build-backend = "poetry.core.masonry.api"
[tool.poetry] [tool.poetry]
name = "swarms" name = "swarms"
version = "2.1.4" version = "2.1.6"
description = "Swarms - Pytorch" description = "Swarms - Pytorch"
license = "MIT" license = "MIT"
authors = ["Kye Gomez <kye@apac.ai>"] authors = ["Kye Gomez <kye@apac.ai>"]
@ -24,7 +24,7 @@ classifiers = [
[tool.poetry.dependencies] [tool.poetry.dependencies]
python = "^3.8.1" python = "^3.8.1"
transformers = "*" transformers = "*"
openai = "0.28.1" openai = "*"
langchain = "*" langchain = "*"
asyncio = "*" asyncio = "*"
nest_asyncio = "*" nest_asyncio = "*"
@ -45,6 +45,8 @@ httpx = "*"
tiktoken = "*" tiktoken = "*"
attrs = "*" attrs = "*"
ggl = "*" ggl = "*"
ratelimit = "*"
beautifulsoup4 = "*" beautifulsoup4 = "*"
huggingface-hub = "*" huggingface-hub = "*"
pydantic = "*" pydantic = "*"

@ -36,6 +36,7 @@ tabulate
colored colored
griptape griptape
addict addict
ratelimit
albumentations albumentations
basicsr basicsr
termcolor termcolor

@ -3,7 +3,7 @@ from swarms.structs import Flow
from swarms.structs.sequential_workflow import SequentialWorkflow from swarms.structs.sequential_workflow import SequentialWorkflow
# Example usage # Example usage
api_key = "" api_key = ""
# Initialize the language flow # Initialize the language flow
llm = OpenAIChat( llm = OpenAIChat(

@ -9,6 +9,6 @@ os.environ["TF_CPP_MIN_LOG_LEVEL"] = "2"
from swarms.agents import * from swarms.agents import *
from swarms.swarms import * from swarms.swarms import *
from swarms.structs import * from swarms.structs import *
from swarms.models import * # import * only works when __all__ = [] is defined in __init__.py from swarms.models import *
from swarms.chunkers import * from swarms.chunkers import *
from swarms.workers import * from swarms.workers import *

@ -0,0 +1,4 @@
"""
Weaviate API Client
"""

@ -29,7 +29,6 @@ class Fuyu:
>>> fuyu = Fuyu() >>> fuyu = Fuyu()
>>> fuyu("Hello, my name is", "path/to/image.png") >>> fuyu("Hello, my name is", "path/to/image.png")
""" """
def __init__( def __init__(

@ -1,30 +1,22 @@
import asyncio
import base64 import base64
import logging import concurrent.futures
import os import re
import time
from dataclasses import dataclass from dataclasses import dataclass
from typing import List, Optional, Union from typing import List, Optional, Tuple
import openai
import requests import requests
from cachetools import TTLCache
from dotenv import load_dotenv from dotenv import load_dotenv
from openai import OpenAI from openai import OpenAI
from ratelimit import limits, sleep_and_retry
from termcolor import colored from termcolor import colored
# ENV # ENV
load_dotenv() load_dotenv()
def logging_config():
"""Configures logging"""
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s - %(name)s - %(levelname)s - %(message)s",
)
logger = logging.getLogger(__name__)
return logger
@dataclass @dataclass
class GPT4VisionResponse: class GPT4VisionResponse:
"""A response structure for GPT-4""" """A response structure for GPT-4"""
@ -56,7 +48,7 @@ class GPT4Vision:
-------- --------
process_img(self, img_path: str) -> str: process_img(self, img_path: str) -> str:
Processes the image to be used for the API request Processes the image to be used for the API request
__call__(self, img: Union[str, List[str]], tasks: List[str]) -> GPT4VisionResponse: run(self, img: Union[str, List[str]], tasks: List[str]) -> GPT4VisionResponse:
Makes a call to the GPT-4 Vision API and returns the image url Makes a call to the GPT-4 Vision API and returns the image url
Example: Example:
@ -66,23 +58,24 @@ class GPT4Vision:
>>> answer = gpt4vision(img, tasks) >>> answer = gpt4vision(img, tasks)
>>> print(answer) >>> print(answer)
""" """
max_retries: int = 3 max_retries: int = 3
model: str = "gpt-4-vision-preview" model: str = "gpt-4-vision-preview"
backoff_factor: float = 2.0 backoff_factor: float = 2.0
timeout_seconds: int = 10 timeout_seconds: int = 10
api_key: Optional[str] = None openai_api_key: Optional[str] = None
# 'Low' or 'High' for respesctively fast or high quality, but high more token usage # 'Low' or 'High' for respesctively fast or high quality, but high more token usage
quality: str = "low" quality: str = "low"
# Max tokens to use for the API request, the maximum might be 3,000 but we don't know # Max tokens to use for the API request, the maximum might be 3,000 but we don't know
max_tokens: int = 200 max_tokens: int = 200
client = OpenAI( client = OpenAI(api_key=openai_api_key,)
api_key=api_key, dashboard: bool = True
max_retries=max_retries, call_limit: int = 1
) period_seconds: int = 60
logger = logging_config()
# Cache for storing API Responses
cache = TTLCache(maxsize=100, ttl=600) # Cache for 10 minutes
class Config: class Config:
"""Config class for the GPT4Vision model""" """Config class for the GPT4Vision model"""
@ -94,204 +87,172 @@ class GPT4Vision:
with open(img, "rb") as image_file: with open(img, "rb") as image_file:
return base64.b64encode(image_file.read()).decode("utf-8") return base64.b64encode(image_file.read()).decode("utf-8")
def __call__( @sleep_and_retry
self, @limits(calls=call_limit,
img: Union[str, List[str]], period=period_seconds) # Rate limit of 10 calls per minute
tasks: List[str], def run(self, task: str, img: str):
) -> GPT4VisionResponse:
"""
Calls the GPT-4 Vision API and returns the image url
Parameters:
-----------
img: Union[str, List[str]]
The image to be used for the API request
tasks: List[str]
The tasks to be used for the API request
Returns:
--------
answer: GPT4VisionResponse
The response from the API request
Example:
--------
>>> gpt4vision = GPT4Vision()
>>> img = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
>>> tasks = ["A painting of a dog"]
>>> answer = gpt4vision(img, tasks)
>>> print(answer)
"""
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {self.api_key}",
}
# Image content
image_content = [{
"type": "imavge_url",
"image_url": img
} if img.startswith("http") else {
"type": "image",
"data": img
} for img in img]
messages = [{
"role":
"user",
"content":
image_content + [{
"type": "text",
"text": q
} for q in tasks],
}]
payload = {
"model": "gpt-4-vision-preview",
"messages": messages,
"max_tokens": self.max_tokens,
"detail": self.quality,
}
for attempt in range(self.max_retries):
try:
response = requests.post(
"https://api.openai.com/v1/chat/completions",
headers=headers,
json=payload,
timeout=self.timeout_seconds,
)
response.raise_for_status()
answer = response.json(
)["choices"][0]["message"]["content"]["text"]
return GPT4VisionResponse(answer=answer)
except requests.exceptions.HTTPError as error:
self.logger.error(
f"HTTP error: {error.response.status_code}, {error.response.text}"
)
if error.response.status_code in [429, 500, 503]:
# Exponential backoff = 429(too many requesys)
# And 503 = (Service unavailable) errors
time.sleep(self.backoff_factor**attempt)
else:
break
except requests.exceptions.RequestException as error:
self.logger.error(f"Request error: {error}")
time.sleep(self.backoff_factor**attempt)
except Exception as error:
self.logger.error(
f"Unexpected Error: {error} try optimizing your api key and try"
" again")
raise error from None
raise TimeoutError("API Request timed out after multiple retries")
def run(self, task: str, img: str) -> str:
""" """
Runs the GPT-4 Vision API Run the GPT-4 Vision model
Parameters: Task: str
----------- The task to run
task: str Img: str
The task to be used for the API request The image to run the task on
img: str
The image to be used for the API request
Returns:
--------
out: str
The response from the API request
Example:
--------
>>> gpt4vision = GPT4Vision()
>>> task = "A painting of a dog"
>>> img = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
>>> answer = gpt4vision.run(task, img)
>>> print(answer)
""" """
if self.dashboard:
self.print_dashboard()
try: try:
response = self.client.chat.completions.create( response = self.client.chat.completions.create(
model=self.model, model="gpt-4-vision-preview",
messages=[{ messages=[{
"role": "role":
"user", "user",
"content": [ "content": [
{ {
"type": "text", "type": "text",
"text": f"{task}" "text": task
}, },
{ {
"type": "image_url", "type": "image_url",
"image_url": f"{img}", "image_url": {
"url": str(img),
},
}, },
], ],
}], }],
max_tokens=self.max_tokens, max_tokens=self.max_tokens,
) )
out = response.choices[0].text out = print(response.choices[0])
# out = self.clean_output(out)
return out return out
except Exception as error: except openai.OpenAIError as e:
print( # logger.error(f"OpenAI API error: {e}")
colored( return f"OpenAI API error: Could not process the image. {e}"
(f"Error when calling GPT4Vision, Error: {error} Try optimizing" except Exception as e:
" your key, and try again"), return f"Unexpected error occurred while processing the image. {e}"
"red",
)) def clean_output(self, output: str):
# Regex pattern to find the Choice object representation in the output
async def arun(self, task: str, img: str) -> str: pattern = r"Choice\(.*?\(content=\"(.*?)\".*?\)\)"
match = re.search(pattern, output, re.DOTALL)
if match:
# Extract the content from the matched pattern
content = match.group(1)
# Replace escaped quotes to get the clean content
content = content.replace(r"\"", '"')
print(content)
else:
print("No content found in the output.")
async def arun(self, task: str, img: str):
""" """
Asynchronous run method for GPT-4 Vision Arun is an async version of run
Parameters: Task: str
----------- The task to run
task: str Img: str
The task to be used for the API request The image to run the task on
img: str
The image to be used for the API request
Returns:
--------
out: str
The response from the API request
Example:
--------
>>> gpt4vision = GPT4Vision()
>>> task = "A painting of a dog"
>>> img = "https://cdn.openai.com/dall-e/encoded/feats/feats_01J9J5ZKJZJY9.png"
>>> answer = await gpt4vision.arun(task, img)
>>> print(answer)
""" """
try: try:
response = await self.client.chat.completions.create( response = await self.client.chat.completions.create(
model=self.model, model="gpt-4-vision-preview",
messages=[{ messages=[{
"role": "role":
"user", "user",
"content": [ "content": [
{ {
"type": "text", "type": "text",
"text": f"{task}" "text": task
}, },
{ {
"type": "image_url", "type": "image_url",
"image_url": f"{img}", "image_url": {
"url": img,
},
}, },
], ],
}], }],
max_tokens=self.max_tokens, max_tokens=self.max_tokens,
) )
out = response.choices[0].text
return out return print(response.choices[0])
except Exception as error: except openai.OpenAIError as e:
print( # logger.error(f"OpenAI API error: {e}")
colored( return f"OpenAI API error: Could not process the image. {e}"
(f"Error when calling GPT4Vision, Error: {error} Try optimizing" except Exception as e:
" your key, and try again"), return f"Unexpected error occurred while processing the image. {e}"
"red",
)) def run_batch(self, tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images"""
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(self.run, task, img)
for task, img in tasks_images
]
results = [future.result() for future in futures]
return results
async def run_batch_async(self,
tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images asynchronously"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, self.run, task, img)
for task, img in tasks_images
]
return await asyncio.gather(*futures)
async def run_batch_async_with_retries(
self, tasks_images: List[Tuple[str, str]]) -> List[str]:
"""Process a batch of tasks and images asynchronously with retries"""
loop = asyncio.get_event_loop()
futures = [
loop.run_in_executor(None, self.run_with_retries, task, img)
for task, img in tasks_images
]
return await asyncio.gather(*futures)
def print_dashboard(self):
dashboard = print(
colored(
f"""
GPT4Vision Dashboard
-------------------
Max Retries: {self.max_retries}
Model: {self.model}
Backoff Factor: {self.backoff_factor}
Timeout Seconds: {self.timeout_seconds}
Image Quality: {self.quality}
Max Tokens: {self.max_tokens}
""",
"green",
))
return dashboard
def health_check(self):
"""Health check for the GPT4Vision model"""
try:
response = requests.get("https://api.openai.com/v1/engines")
return response.status_code == 200
except requests.RequestException as error:
print(f"Health check failed: {error}")
return False
def sanitize_input(self, text: str) -> str:
"""
Sanitize input to prevent injection attacks.
Parameters:
text: str - The input text to be sanitized.
Returns:
The sanitized text.
"""
# Example of simple sanitization, this should be expanded based on the context and usage
sanitized_text = re.sub(r"[^\w\s]", "", text)
return sanitized_text

@ -4,6 +4,7 @@ visual question answering on real world docs lik invoice, pdfs, etc
""" """
from transformers import pipeline from transformers import pipeline
class LayoutLMDocumentQA: class LayoutLMDocumentQA:
""" """
LayoutLMDocumentQA for document question answering: LayoutLMDocumentQA for document question answering:
@ -23,9 +24,9 @@ class LayoutLMDocumentQA:
def __init__( def __init__(
self, self,
model_name: str = "impira/layoutlm-document-qa", model_name: str = "impira/layoutlm-document-qa",
task: str = "document-question-answering", task_type: str = "document-question-answering",
): ):
self.pipeline = pipeline(self.task, model=self.model_name) self.pipeline = pipeline(self.task_type, model=self.model_name)
def __call__(self, task: str, img_path: str): def __call__(self, task: str, img_path: str):
"""Call for model""" """Call for model"""

@ -75,13 +75,17 @@ class Nougat:
def clean_nougat_output(raw_output): def clean_nougat_output(raw_output):
# Define the pattern to extract the relevant data # Define the pattern to extract the relevant data
daily_balance_pattern = r"\*\*(\d{2}/\d{2}/\d{4})\*\*\n\n\*\*([\d,]+\.\d{2})\*\*" daily_balance_pattern = (
r"\*\*(\d{2}/\d{2}/\d{4})\*\*\n\n\*\*([\d,]+\.\d{2})\*\*")
# Find all matches of the pattern # Find all matches of the pattern
matches = re.findall(daily_balance_pattern, raw_output) matches = re.findall(daily_balance_pattern, raw_output)
# Convert the matches to a readable format # Convert the matches to a readable format
cleaned_data = ["Date: {}, Amount: {}".format(date, amount.replace(',', '')) for date, amount in matches] cleaned_data = [
"Date: {}, Amount: {}".format(date, amount.replace(",", ""))
for date, amount in matches
]
# Join the cleaned data with new lines for readability # Join the cleaned data with new lines for readability
return '\n'.join(cleaned_data) return "\n".join(cleaned_data)

@ -493,7 +493,7 @@ class BaseOpenAI(BaseLLM):
openai.proxy = { openai.proxy = {
"http": self.openai_proxy, "http": self.openai_proxy,
"https": self.openai_proxy "https": self.openai_proxy,
} # type: ignore[assignment] # noqa: E501 } # type: ignore[assignment] # noqa: E501
return {**openai_creds, **self._default_params} return {**openai_creds, **self._default_params}
@ -783,7 +783,7 @@ class OpenAIChat(BaseLLM):
if openai_proxy: if openai_proxy:
openai.proxy = { openai.proxy = {
"http": openai_proxy, "http": openai_proxy,
"https": openai_proxy "https": openai_proxy,
} # type: ignore[assignment] # noqa: E501 } # type: ignore[assignment] # noqa: E501
except ImportError: except ImportError:
raise ImportError("Could not import openai python package. " raise ImportError("Could not import openai python package. "

@ -8,9 +8,9 @@ TODO:
- add async processing for run and batch run - add async processing for run and batch run
- add plan module - add plan module
- concurrent - concurrent
- - Add batched inputs
""" """
import asyncio
import json import json
import logging import logging
import time import time
@ -100,24 +100,26 @@ class Flow:
self, self,
llm: Any, llm: Any,
# template: str, # template: str,
max_loops: int = 5, max_loops = 5,
stopping_condition: Optional[Callable[[str], bool]] = None, stopping_condition: Optional[Callable[[str], bool]] = None,
loop_interval: int = 1, loop_interval: int = 1,
retry_attempts: int = 3, retry_attempts: int = 3,
retry_interval: int = 1, retry_interval: int = 1,
return_history: bool = False,
dynamic_loops: Optional[bool] = False,
interactive: bool = False, interactive: bool = False,
dashboard: bool = False, dashboard: bool = False,
name: str = "Flow agent", agent_name: str = "Flow agent",
system_prompt: str = FLOW_SYSTEM_PROMPT, system_prompt: str = FLOW_SYSTEM_PROMPT,
# tools: List[BaseTool] = None, # tools: List[BaseTool] = None,
dynamic_temperature: bool = False, dynamic_temperature: bool = False,
saved_state_path: Optional[str] = "flow_state.json", saved_state_path: Optional[str] = "flow_state.json",
autosave: bool = False, autosave: bool = False,
context_length: int = 8192, context_length: int = 8192,
user_name: str = "Human",
**kwargs: Any, **kwargs: Any,
): ):
self.llm = llm self.llm = llm
# self.template = template
self.max_loops = max_loops self.max_loops = max_loops
self.stopping_condition = stopping_condition self.stopping_condition = stopping_condition
self.loop_interval = loop_interval self.loop_interval = loop_interval
@ -130,9 +132,14 @@ class Flow:
self.interactive = interactive self.interactive = interactive
self.dashboard = dashboard self.dashboard = dashboard
self.dynamic_temperature = dynamic_temperature self.dynamic_temperature = dynamic_temperature
self.dynamic_loops = dynamic_loops
self.user_name = user_name
# The max_loops will be set dynamically if the dynamic_loop
if self.dynamic_loops:
self.max_loops = "auto"
# self.tools = tools # self.tools = tools
self.system_prompt = system_prompt self.system_prompt = system_prompt
self.name = name self.agent_name = agent_name
self.saved_state_path = saved_state_path self.saved_state_path = saved_state_path
self.autosave = autosave self.autosave = autosave
self.response_filters = [] self.response_filters = []
@ -194,7 +201,7 @@ class Flow:
def add_task_to_memory(self, task: str): def add_task_to_memory(self, task: str):
"""Add the task to the memory""" """Add the task to the memory"""
self.memory.append([f"Human: {task}"]) self.memory.append([f"{self.user_name}: {task}"])
def add_message_to_memory(self, message: str): def add_message_to_memory(self, message: str):
"""Add the message to the memory""" """Add the message to the memory"""
@ -222,7 +229,7 @@ class Flow:
---------------------------------------- ----------------------------------------
Flow Configuration: Flow Configuration:
Name: {self.name} Name: {self.agent_name}
System Prompt: {self.system_prompt} System Prompt: {self.system_prompt}
Task: {task} Task: {task}
Max Loops: {self.max_loops} Max Loops: {self.max_loops}
@ -277,47 +284,40 @@ class Flow:
5. Repeat until stopping condition is met or max_loops is reached 5. Repeat until stopping condition is met or max_loops is reached
""" """
# Restore from saved state if provided, ortherwise start with a new history # Activate Autonomous agent message
# if self.saved_state:
# self.load_state(self.saved_state)
# history = self.memory[-1]
# print(f"Loaded state from {self.saved_state}")
# else:
# history = [f"Human: {task}"]
# self.memory.append(history)
# print(colored(">>> Autonomous Agent Activated", "cyan", attrs=["bold"]))
self.activate_autonomous_agent() self.activate_autonomous_agent()
# if self.autosave:
response = task response = task
history = [f"Human: {task}"] history = [f"{self.user_name}: {task}"]
# If dashboard = True then print the dashboard # If dashboard = True then print the dashboard
if self.dashboard: if self.dashboard:
self.print_dashboard(task) self.print_dashboard(task)
for i in range(self.max_loops): loop_count = 0
print(colored(f"\nLoop {i+1} of {self.max_loops}", "blue")) # for i in range(self.max_loops):
while self.max_loops == 'auto' or loop_count < self.max_loops:
loop_count += 1
print(colored(f"\nLoop {loop_count} of {self.max_loops}", "blue"))
print("\n") print("\n")
if self._check_stopping_condition(response) or parse_done_token(
response): if self._check_stopping_condition(response) or parse_done_token(response):
break break
# Adjust temperature, comment if no work # Adjust temperature, comment if no work
if self.dynamic_temperature: if self.dynamic_temperature:
self.dynamic_temperature() self.dynamic_temperature()
# Preparing the prompt
task = self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response)
attempt = 0 attempt = 0
while attempt < self.retry_attempts: while attempt < self.retry_attempts:
try: try:
response = self.llm( response = self.llm(
self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response), task
**kwargs, **kwargs,
) )
# print(f"Next query: {response}")
# break
if self.interactive: if self.interactive:
print(f"AI: {response}") print(f"AI: {response}")
history.append(f"AI: {response}") history.append(f"AI: {response}")
@ -341,13 +341,14 @@ class Flow:
print(colored(f"Autosaving flow state to {save_path}", "green")) print(colored(f"Autosaving flow state to {save_path}", "green"))
self.save_state(save_path) self.save_state(save_path)
return response # , history if self.return_history:
return response, history
return response
async def arun(self, task: str, **kwargs): async def arun(self, task: str, **kwargs):
"""Async run"""
pass
""" """
Run the autonomous agent loop Run the autonomous agent loop aschnronously
Args: Args:
task (str): The initial task to run task (str): The initial task to run
@ -360,44 +361,40 @@ class Flow:
5. Repeat until stopping condition is met or max_loops is reached 5. Repeat until stopping condition is met or max_loops is reached
""" """
# Restore from saved state if provided, ortherwise start with a new history # Activate Autonomous agent message
# if self.saved_state: self.activate_autonomous_agent()
# self.load_state(self.saved_state)
# history = self.memory[-1]
# print(f"Loaded state from {self.saved_state}")
# else:
# history = [f"Human: {task}"]
# self.memory.append(history)
print(colored(">>> Autonomous Agent Activated", "cyan", attrs=["bold"]))
response = task response = task
history = [f"Human: {task}"] history = [f"{self.user_name}: {task}"]
# If dashboard = True then print the dashboard # If dashboard = True then print the dashboard
if self.dashboard: if self.dashboard:
self.print_dashboard(task) self.print_dashboard(task)
for i in range(self.max_loops): loop_count = 0
print(colored(f"\nLoop {i+1} of {self.max_loops}", "blue")) # for i in range(self.max_loops):
while self.max_loops == 'auto' or loop_count < self.max_loops:
loop_count += 1
print(colored(f"\nLoop {loop_count} of {self.max_loops}", "blue"))
print("\n") print("\n")
if self._check_stopping_condition(response) or parse_done_token(
response): if self._check_stopping_condition(response) or parse_done_token(response):
break break
# Adjust temperature, comment if no work # Adjust temperature, comment if no work
if self.dynamic_temperature: if self.dynamic_temperature:
self.dynamic_temperature() self.dynamic_temperature()
# Preparing the prompt
task = self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response)
attempt = 0 attempt = 0
while attempt < self.retry_attempts: while attempt < self.retry_attempts:
try: try:
response = self.llm( response = self.llm(
self.agent_history_prompt(FLOW_SYSTEM_PROMPT, response), task
**kwargs, **kwargs,
) )
# print(f"Next query: {response}")
# break
if self.interactive: if self.interactive:
print(f"AI: {response}") print(f"AI: {response}")
history.append(f"AI: {response}") history.append(f"AI: {response}")
@ -416,10 +413,15 @@ class Flow:
time.sleep(self.loop_interval) time.sleep(self.loop_interval)
self.memory.append(history) self.memory.append(history)
# if self.autosave: if self.autosave:
# self.save_state("flow_state.json") save_path = self.saved_state_path or "flow_state.json"
print(colored(f"Autosaving flow state to {save_path}", "green"))
self.save_state(save_path)
return response # , history if self.return_history:
return response, history
return response
def _run(self, **kwargs: Any) -> str: def _run(self, **kwargs: Any) -> str:
"""Generate a result using the provided keyword args.""" """Generate a result using the provided keyword args."""
@ -451,6 +453,19 @@ class Flow:
""" """
return agent_history_prompt return agent_history_prompt
async def run_concurrent(self, tasks: List[str], **kwargs):
"""
Run a batch of tasks concurrently and handle an infinite level of task inputs.
Args:
tasks (List[str]): A list of tasks to run.
"""
task_coroutines = [
self.run_async(task, **kwargs) for task in tasks
]
completed_tasks = await asyncio.gather(*task_coroutines)
return completed_tasks
def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]: def bulk_run(self, inputs: List[Dict[str, Any]]) -> List[str]:
"""Generate responses for multiple input sets.""" """Generate responses for multiple input sets."""
return [self.run(**input_data) for input_data in inputs] return [self.run(**input_data) for input_data in inputs]
@ -666,7 +681,8 @@ class Flow:
def get_llm_params(self): def get_llm_params(self):
""" """
Extracts and returns the parameters of the llm object for serialization. Extracts and returns the parameters of the llm object for serialization.
It assumes that the llm object has an __init__ method with parameters that can be used to recreate it. It assumes that the llm object has an __init__ method
with parameters that can be used to recreate it.
""" """
if not hasattr(self.llm, "__init__"): if not hasattr(self.llm, "__init__"):
return None return None
@ -770,8 +786,24 @@ class Flow:
Your response: Your response:
""" """
response = self.llm(prompt, **kwargs) response = self.llm(prompt, **kwargs)
return {"role": self.name, "content": response} return {"role": self.agent_name, "content": response}
def update_system_prompt(self, system_prompt: str): def update_system_prompt(self, system_prompt: str):
"""Upddate the system message""" """Upddate the system message"""
self.system_prompt = system_prompt self.system_prompt = system_prompt
def update_max_loops(self, max_loops: int):
"""Update the max loops"""
self.max_loops = max_loops
def update_loop_interval(self, loop_interval: int):
"""Update the loop interval"""
self.loop_interval = loop_interval
def update_retry_attempts(self, retry_attempts: int):
"""Update the retry attempts"""
self.retry_attempts = retry_attempts
def update_retry_interval(self, retry_interval: int):
"""Update the retry interval"""
self.retry_interval = retry_interval

@ -1,5 +1,6 @@
import pytest import pytest
from transformers import AutoModelForCausalLM, AutoTokenizer from transformers import AutoModelForCausalLM, AutoTokenizer
from swarms.models.mpt import MPT7B from swarms.models.mpt import MPT7B

Loading…
Cancel
Save