parent
9e52aec4a2
commit
3c519e803b
@ -0,0 +1,241 @@
|
||||
---
|
||||
title: Best Practices for Multi-Agent Systems
|
||||
description: A comprehensive guide to building and managing multi-agent systems
|
||||
---
|
||||
|
||||
# Best Practices for Multi-Agent Systems
|
||||
|
||||
## Overview
|
||||
|
||||
This guide provides comprehensive best practices for designing, implementing, and managing multi-agent systems. It covers key aspects from architecture selection to performance optimization and security considerations.
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[Multi-Agent System] --> B[Architecture]
|
||||
A --> C[Implementation]
|
||||
A --> D[Management]
|
||||
A --> E[Security]
|
||||
|
||||
B --> B1[HHCS]
|
||||
B --> B2[Auto Agent Builder]
|
||||
B --> B3[SwarmRouter]
|
||||
|
||||
C --> C1[Agent Design]
|
||||
C --> C2[Communication]
|
||||
C --> C3[Error Handling]
|
||||
|
||||
D --> D1[Monitoring]
|
||||
D --> D2[Scaling]
|
||||
D --> D3[Performance]
|
||||
|
||||
E --> E1[Data Privacy]
|
||||
E --> E2[Access Control]
|
||||
E --> E3[Audit Logging]
|
||||
```
|
||||
|
||||
## Why Multi-Agent Systems?
|
||||
|
||||
Individual agents face several limitations that multi-agent systems can overcome:
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
A[Individual Agent Limitations] --> B[Context Window Limits]
|
||||
A --> C[Single Task Execution]
|
||||
A --> D[Hallucination]
|
||||
A --> E[No Collaboration]
|
||||
|
||||
F[Multi-Agent Solutions] --> G[Distributed Processing]
|
||||
F --> H[Parallel Task Execution]
|
||||
F --> I[Cross-Verification]
|
||||
F --> J[Collaborative Intelligence]
|
||||
```
|
||||
|
||||
### Key Benefits
|
||||
|
||||
1. **Enhanced Reliability**
|
||||
- Cross-verification between agents
|
||||
- Redundancy and fault tolerance
|
||||
- Consensus-based decision making
|
||||
|
||||
2. **Improved Efficiency**
|
||||
- Parallel processing capabilities
|
||||
- Specialized agent roles
|
||||
- Resource optimization
|
||||
|
||||
3. **Better Accuracy**
|
||||
- Multiple verification layers
|
||||
- Collaborative fact-checking
|
||||
- Consensus-driven outputs
|
||||
|
||||
## Architecture Selection
|
||||
|
||||
Choose the appropriate architecture based on your needs:
|
||||
|
||||
| Architecture | Best For | Key Features |
|
||||
|--------------|----------|--------------|
|
||||
| HHCS | Complex, multi-domain tasks | - Clear task routing<br>- Specialized handling<br>- Parallel processing |
|
||||
| Auto Agent Builder | Dynamic, evolving tasks | - Self-organizing<br>- Flexible scaling<br>- Adaptive creation |
|
||||
| SwarmRouter | Varied task types | - Multiple workflows<br>- Simple configuration<br>- Flexible deployment |
|
||||
|
||||
## Implementation Best Practices
|
||||
|
||||
### 1. Agent Design
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[Agent Design] --> B[Clear Role Definition]
|
||||
A --> C[Focused System Prompts]
|
||||
A --> D[Error Handling]
|
||||
A --> E[Memory Management]
|
||||
|
||||
B --> B1[Specialized Tasks]
|
||||
B --> B2[Defined Responsibilities]
|
||||
|
||||
C --> C1[Task-Specific Instructions]
|
||||
C --> C2[Communication Guidelines]
|
||||
|
||||
D --> D1[Retry Mechanisms]
|
||||
D --> D2[Fallback Strategies]
|
||||
|
||||
E --> E1[Context Management]
|
||||
E --> E2[History Tracking]
|
||||
```
|
||||
|
||||
### 2. Communication Protocols
|
||||
|
||||
- **State Alignment**
|
||||
- Begin with shared understanding
|
||||
- Regular status updates
|
||||
- Clear task progression
|
||||
|
||||
- **Information Sharing**
|
||||
- Transparent decision making
|
||||
- Explicit acknowledgments
|
||||
- Structured data formats
|
||||
|
||||
### 3. Error Handling
|
||||
|
||||
```python
|
||||
try:
|
||||
result = router.route_task(task)
|
||||
except Exception as e:
|
||||
logger.error(f"Task routing failed: {str(e)}")
|
||||
# Implement retry or fallback strategy
|
||||
```
|
||||
|
||||
## Performance Optimization
|
||||
|
||||
### 1. Resource Management
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
A[Resource Management] --> B[Memory Usage]
|
||||
A --> C[CPU Utilization]
|
||||
A --> D[API Rate Limits]
|
||||
|
||||
B --> B1[Caching]
|
||||
B --> B2[Cleanup]
|
||||
|
||||
C --> C1[Load Balancing]
|
||||
C --> C2[Concurrent Processing]
|
||||
|
||||
D --> D1[Rate Limiting]
|
||||
D --> D2[Request Batching]
|
||||
```
|
||||
|
||||
### 2. Scaling Strategies
|
||||
|
||||
1. **Horizontal Scaling**
|
||||
- Add more agents for parallel processing
|
||||
- Distribute workload across instances
|
||||
- Balance resource utilization
|
||||
|
||||
2. **Vertical Scaling**
|
||||
- Optimize individual agent performance
|
||||
- Enhance memory management
|
||||
- Improve processing efficiency
|
||||
|
||||
## Security Considerations
|
||||
|
||||
### 1. Data Privacy
|
||||
|
||||
- Implement encryption for sensitive data
|
||||
- Secure communication channels
|
||||
- Regular security audits
|
||||
|
||||
### 2. Access Control
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[Access Control] --> B[Authentication]
|
||||
A --> C[Authorization]
|
||||
A --> D[Audit Logging]
|
||||
|
||||
B --> B1[Identity Verification]
|
||||
B --> B2[Token Management]
|
||||
|
||||
C --> C1[Role-Based Access]
|
||||
C --> C2[Permission Management]
|
||||
|
||||
D --> D1[Activity Tracking]
|
||||
D --> D2[Compliance Monitoring]
|
||||
```
|
||||
|
||||
## Monitoring and Maintenance
|
||||
|
||||
### 1. Key Metrics
|
||||
|
||||
- Response times
|
||||
- Success rates
|
||||
- Error rates
|
||||
- Resource utilization
|
||||
- API usage
|
||||
|
||||
### 2. Logging Best Practices
|
||||
|
||||
```python
|
||||
# Structured logging example
|
||||
logger.info({
|
||||
'event': 'task_completion',
|
||||
'task_id': task.id,
|
||||
'duration': duration,
|
||||
'agents_involved': agent_count,
|
||||
'status': 'success'
|
||||
})
|
||||
```
|
||||
|
||||
### 3. Alert Configuration
|
||||
|
||||
Set up alerts for:
|
||||
- Critical errors
|
||||
- Performance degradation
|
||||
- Resource constraints
|
||||
- Security incidents
|
||||
|
||||
## Getting Started
|
||||
|
||||
1. **Start Small**
|
||||
- Begin with a pilot project
|
||||
- Test with limited scope
|
||||
- Gather metrics and feedback
|
||||
|
||||
2. **Scale Gradually**
|
||||
- Increase complexity incrementally
|
||||
- Add agents as needed
|
||||
- Monitor performance impact
|
||||
|
||||
3. **Maintain Documentation**
|
||||
- Keep system diagrams updated
|
||||
- Document configuration changes
|
||||
- Track performance optimizations
|
||||
|
||||
## Conclusion
|
||||
|
||||
Building effective multi-agent systems requires careful consideration of architecture, implementation, security, and maintenance practices. By following these guidelines, you can create robust, efficient, and secure multi-agent systems that effectively overcome the limitations of individual agents.
|
||||
|
||||
!!! tip "Remember"
|
||||
- Start with clear objectives
|
||||
- Choose appropriate architecture
|
||||
- Implement proper security measures
|
||||
- Monitor and optimize performance
|
||||
- Document everything
|
@ -0,0 +1,160 @@
|
||||
# Limitations of Individual Agents
|
||||
|
||||
This section explores the fundamental limitations of individual AI agents and why multi-agent systems are necessary for complex tasks. Understanding these limitations is crucial for designing effective multi-agent architectures.
|
||||
|
||||
## Overview
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A[Individual Agent Limitations] --> B[Context Window Limits]
|
||||
A --> C[Hallucination]
|
||||
A --> D[Single Task Execution]
|
||||
A --> E[Lack of Collaboration]
|
||||
A --> F[Accuracy Issues]
|
||||
A --> G[Processing Speed]
|
||||
```
|
||||
|
||||
## 1. Context Window Limits
|
||||
|
||||
### The Challenge
|
||||
Individual agents are constrained by fixed context windows, limiting their ability to process large amounts of information simultaneously.
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
subgraph "Context Window Limitation"
|
||||
Input[Large Document] --> Truncation[Truncation]
|
||||
Truncation --> ProcessedPart[Processed Part]
|
||||
Truncation --> UnprocessedPart[Unprocessed Part]
|
||||
end
|
||||
```
|
||||
|
||||
### Impact
|
||||
- Limited understanding of large documents
|
||||
- Fragmented processing of long conversations
|
||||
- Inability to maintain extended context
|
||||
- Loss of important information
|
||||
|
||||
## 2. Hallucination
|
||||
|
||||
### The Challenge
|
||||
Individual agents may generate plausible-sounding but incorrect information, especially when dealing with ambiguous or incomplete data.
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
Input[Ambiguous Input] --> Agent[AI Agent]
|
||||
Agent --> Valid[Valid Output]
|
||||
Agent --> Hallucination[Hallucinated Output]
|
||||
style Hallucination fill:#ff9999
|
||||
```
|
||||
|
||||
### Impact
|
||||
- Unreliable information generation
|
||||
- Reduced trust in system outputs
|
||||
- Potential for misleading decisions
|
||||
- Need for extensive verification
|
||||
|
||||
## 3. Single Task Execution
|
||||
|
||||
### The Challenge
|
||||
Most individual agents are optimized for specific tasks and struggle with multi-tasking or adapting to new requirements.
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
Task1[Task A] --> Agent1[Agent A]
|
||||
Task2[Task B] --> Agent2[Agent B]
|
||||
Task3[Task C] --> Agent3[Agent C]
|
||||
Agent1 --> Output1[Output A]
|
||||
Agent2 --> Output2[Output B]
|
||||
Agent3 --> Output3[Output C]
|
||||
```
|
||||
|
||||
### Impact
|
||||
- Limited flexibility
|
||||
- Inefficient resource usage
|
||||
- Complex integration requirements
|
||||
- Reduced adaptability
|
||||
|
||||
## 4. Lack of Collaboration
|
||||
|
||||
### The Challenge
|
||||
Individual agents operate in isolation, unable to share insights or coordinate actions with other agents.
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
A1[Agent 1] --> O1[Output 1]
|
||||
A2[Agent 2] --> O2[Output 2]
|
||||
A3[Agent 3] --> O3[Output 3]
|
||||
style A1 fill:#f9f,stroke:#333
|
||||
style A2 fill:#f9f,stroke:#333
|
||||
style A3 fill:#f9f,stroke:#333
|
||||
```
|
||||
|
||||
### Impact
|
||||
- No knowledge sharing
|
||||
- Duplicate effort
|
||||
- Missed optimization opportunities
|
||||
- Limited problem-solving capabilities
|
||||
|
||||
## 5. Accuracy Issues
|
||||
|
||||
### The Challenge
|
||||
Individual agents may produce inaccurate results due to:
|
||||
- Limited training data
|
||||
- Model biases
|
||||
- Lack of cross-validation
|
||||
- Incomplete context understanding
|
||||
|
||||
```mermaid
|
||||
graph LR
|
||||
Input[Input Data] --> Processing[Processing]
|
||||
Processing --> Accurate[Accurate Output]
|
||||
Processing --> Inaccurate[Inaccurate Output]
|
||||
style Inaccurate fill:#ff9999
|
||||
```
|
||||
|
||||
## 6. Processing Speed Limitations
|
||||
|
||||
### The Challenge
|
||||
Individual agents may experience:
|
||||
- Slow response times
|
||||
- Resource constraints
|
||||
- Limited parallel processing
|
||||
- Bottlenecks in complex tasks
|
||||
|
||||
```mermaid
|
||||
graph TD
|
||||
Input[Input] --> Queue[Processing Queue]
|
||||
Queue --> Processing[Sequential Processing]
|
||||
Processing --> Delay[Processing Delay]
|
||||
Delay --> Output[Delayed Output]
|
||||
```
|
||||
|
||||
## Best Practices for Mitigation
|
||||
|
||||
1. **Use Multi-Agent Systems**
|
||||
- Distribute tasks across agents
|
||||
- Enable parallel processing
|
||||
- Implement cross-validation
|
||||
- Foster collaboration
|
||||
|
||||
2. **Implement Verification**
|
||||
- Cross-check results
|
||||
- Use consensus mechanisms
|
||||
- Monitor accuracy metrics
|
||||
- Track performance
|
||||
|
||||
3. **Optimize Resource Usage**
|
||||
- Balance load distribution
|
||||
- Cache frequent operations
|
||||
- Implement efficient queuing
|
||||
- Monitor system health
|
||||
|
||||
## Conclusion
|
||||
|
||||
Understanding these limitations is crucial for:
|
||||
- Designing robust multi-agent systems
|
||||
- Implementing effective mitigation strategies
|
||||
- Optimizing system performance
|
||||
- Ensuring reliable outputs
|
||||
|
||||
The next section explores how [Multi-Agent Architecture](architecture.md) addresses these limitations through collaborative approaches and specialized agent roles.
|
@ -0,0 +1,231 @@
|
||||
# Swarms API Best Practices Guide
|
||||
|
||||
This comprehensive guide outlines production-grade best practices for using the Swarms API effectively. Learn how to choose the right swarm architecture, optimize costs, and implement robust error handling.
|
||||
|
||||
## Quick Reference Cards
|
||||
|
||||
=== "Swarm Types"
|
||||
|
||||
!!! info "Available Swarm Architectures"
|
||||
|
||||
| Swarm Type | Best For | Use Cases |
|
||||
|------------|----------|------------|
|
||||
| `AgentRearrange` | Dynamic workflows | - Complex task decomposition<br>- Adaptive processing<br>- Multi-stage analysis |
|
||||
| `MixtureOfAgents` | Diverse expertise | - Cross-domain problems<br>- Comprehensive analysis<br>- Multi-perspective tasks |
|
||||
| `SpreadSheetSwarm` | Data processing | - Financial analysis<br>- Data transformation<br>- Batch calculations |
|
||||
| `SequentialWorkflow` | Linear processes | - Document processing<br>- Step-by-step analysis<br>- Quality control |
|
||||
| `ConcurrentWorkflow` | Parallel tasks | - Batch processing<br>- Independent analyses<br>- High-throughput needs |
|
||||
| `GroupChat` | Collaborative solving | - Brainstorming<br>- Decision making<br>- Problem solving |
|
||||
| `MultiAgentRouter` | Task distribution | - Load balancing<br>- Specialized processing<br>- Resource optimization |
|
||||
| `AutoSwarmBuilder` | Automated setup | - Quick prototyping<br>- Simple tasks<br>- Testing |
|
||||
| `HiearchicalSwarm` | Complex organization | - Project management<br>- Research analysis<br>- Enterprise workflows |
|
||||
| `MajorityVoting` | Consensus needs | - Quality assurance<br>- Decision validation<br>- Risk assessment |
|
||||
|
||||
=== "Cost Optimization"
|
||||
|
||||
!!! tip "Cost Management Strategies"
|
||||
|
||||
| Strategy | Implementation | Impact |
|
||||
|----------|----------------|---------|
|
||||
| Batch Processing | Group related tasks | 20-30% cost reduction |
|
||||
| Off-peak Usage | Schedule for 8 PM - 6 AM PT | 15-25% cost reduction |
|
||||
| Token Optimization | Precise prompts, focused tasks | 10-20% cost reduction |
|
||||
| Caching | Store reusable results | 30-40% cost reduction |
|
||||
| Agent Optimization | Use minimum required agents | 15-25% cost reduction |
|
||||
|
||||
=== "Error Handling"
|
||||
|
||||
!!! warning "Error Management Best Practices"
|
||||
|
||||
| Error Code | Strategy | Implementation |
|
||||
|------------|----------|----------------|
|
||||
| 400 | Input Validation | Pre-request parameter checks |
|
||||
| 401 | Auth Management | Regular key rotation, secure storage |
|
||||
| 429 | Rate Limiting | Exponential backoff, request queuing |
|
||||
| 500 | Resilience | Retry with backoff, fallback logic |
|
||||
| 503 | High Availability | Multi-region setup, redundancy |
|
||||
|
||||
## Choosing the Right Swarm Architecture
|
||||
|
||||
### Decision Framework
|
||||
|
||||
Use this framework to select the optimal swarm architecture for your use case:
|
||||
|
||||
1. **Task Complexity Analysis**
|
||||
- Simple tasks → `AutoSwarmBuilder`
|
||||
|
||||
- Complex tasks → `HiearchicalSwarm` or `MultiAgentRouter`
|
||||
|
||||
- Dynamic tasks → `AgentRearrange`
|
||||
|
||||
2. **Workflow Pattern**
|
||||
|
||||
- Linear processes → `SequentialWorkflow`
|
||||
|
||||
- Parallel operations → `ConcurrentWorkflow`
|
||||
|
||||
- Collaborative tasks → `GroupChat`
|
||||
|
||||
3. **Domain Requirements**
|
||||
|
||||
- Multi-domain expertise → `MixtureOfAgents`
|
||||
|
||||
- Data processing → `SpreadSheetSwarm`
|
||||
|
||||
- Quality assurance → `MajorityVoting`
|
||||
|
||||
### Industry-Specific Recommendations
|
||||
|
||||
=== "Finance"
|
||||
|
||||
!!! example "Financial Applications"
|
||||
|
||||
|
||||
- Risk Analysis: `HiearchicalSwarm`
|
||||
|
||||
- Market Research: `MixtureOfAgents`
|
||||
|
||||
- Trading Strategies: `ConcurrentWorkflow`
|
||||
|
||||
- Portfolio Management: `SpreadSheetSwarm`
|
||||
|
||||
=== "Healthcare"
|
||||
|
||||
!!! example "Healthcare Applications"
|
||||
|
||||
|
||||
- Patient Analysis: `SequentialWorkflow`
|
||||
|
||||
- Research Review: `MajorityVoting`
|
||||
|
||||
- Treatment Planning: `GroupChat`
|
||||
|
||||
- Medical Records: `MultiAgentRouter`
|
||||
|
||||
=== "Legal"
|
||||
|
||||
!!! example "Legal Applications"
|
||||
|
||||
|
||||
- Document Review: `SequentialWorkflow`
|
||||
|
||||
- Case Analysis: `MixtureOfAgents`
|
||||
|
||||
- Compliance Check: `HiearchicalSwarm`
|
||||
|
||||
- Contract Analysis: `ConcurrentWorkflow`
|
||||
|
||||
## Production Implementation Guide
|
||||
|
||||
### Authentication Best Practices
|
||||
|
||||
```python
|
||||
import os
|
||||
from dotenv import load_dotenv
|
||||
|
||||
# Load environment variables
|
||||
load_dotenv()
|
||||
|
||||
# Secure API key management
|
||||
API_KEY = os.getenv("SWARMS_API_KEY")
|
||||
if not API_KEY:
|
||||
raise EnvironmentError("API key not found")
|
||||
|
||||
# Headers with retry capability
|
||||
headers = {
|
||||
"x-api-key": API_KEY,
|
||||
"Content-Type": "application/json",
|
||||
}
|
||||
```
|
||||
|
||||
### Robust Error Handling
|
||||
|
||||
```python
|
||||
import backoff
|
||||
import requests
|
||||
from typing import Dict, Any
|
||||
|
||||
class SwarmsAPIError(Exception):
|
||||
"""Custom exception for Swarms API errors"""
|
||||
pass
|
||||
|
||||
@backoff.on_exception(
|
||||
backoff.expo,
|
||||
(requests.exceptions.RequestException, SwarmsAPIError),
|
||||
max_tries=5
|
||||
)
|
||||
def execute_swarm(payload: Dict[str, Any]) -> Dict[str, Any]:
|
||||
"""
|
||||
Execute swarm with robust error handling and retries
|
||||
"""
|
||||
try:
|
||||
response = requests.post(
|
||||
f"{BASE_URL}/v1/swarm/completions",
|
||||
headers=headers,
|
||||
json=payload,
|
||||
timeout=30
|
||||
)
|
||||
|
||||
response.raise_for_status()
|
||||
return response.json()
|
||||
|
||||
except requests.exceptions.RequestException as e:
|
||||
if e.response is not None:
|
||||
if e.response.status_code == 429:
|
||||
# Rate limit exceeded
|
||||
raise SwarmsAPIError("Rate limit exceeded")
|
||||
elif e.response.status_code == 401:
|
||||
# Authentication error
|
||||
raise SwarmsAPIError("Invalid API key")
|
||||
raise SwarmsAPIError(f"API request failed: {str(e)}")
|
||||
```
|
||||
|
||||
|
||||
## Appendix
|
||||
|
||||
### Common Patterns and Anti-patterns
|
||||
|
||||
!!! success "Recommended Patterns"
|
||||
|
||||
- Use appropriate swarm types for tasks
|
||||
|
||||
- Implement robust error handling
|
||||
|
||||
- Monitor and log executions
|
||||
|
||||
- Cache repeated results
|
||||
|
||||
- Rotate API keys regularly
|
||||
|
||||
!!! danger "Anti-patterns to Avoid"
|
||||
|
||||
|
||||
- Hardcoding API keys
|
||||
|
||||
- Ignoring rate limits
|
||||
|
||||
- Missing error handling
|
||||
|
||||
|
||||
- Excessive agent count
|
||||
|
||||
- Inadequate monitoring
|
||||
|
||||
### Performance Benchmarks
|
||||
|
||||
!!! note "Typical Performance Metrics"
|
||||
|
||||
| Metric | Target Range | Warning Threshold |
|
||||
|--------|--------------|-------------------|
|
||||
| Response Time | < 2s | > 5s |
|
||||
| Success Rate | > 99% | < 95% |
|
||||
| Cost per Task | < $0.05 | > $0.10 |
|
||||
| Cache Hit Rate | > 80% | < 60% |
|
||||
| Error Rate | < 1% | > 5% |
|
||||
|
||||
### Additional Resources
|
||||
|
||||
!!! info "Useful Links"
|
||||
|
||||
- [Swarms API Documentation](https://docs.swarms.world)
|
||||
- [API Dashboard](https://swarms.world/platform/api-keys)
|
@ -0,0 +1,83 @@
|
||||
site_name: Multi-Agent LLM Systems Best Practices
|
||||
site_description: Comprehensive guide for building and managing multi-agent systems
|
||||
site_author: Swarms Team
|
||||
|
||||
theme:
|
||||
name: material
|
||||
features:
|
||||
- navigation.tabs
|
||||
- navigation.sections
|
||||
- navigation.expand
|
||||
- navigation.top
|
||||
- search.suggest
|
||||
- search.highlight
|
||||
- content.tabs.link
|
||||
- content.code.annotation
|
||||
- content.code.copy
|
||||
language: en
|
||||
palette:
|
||||
- scheme: default
|
||||
toggle:
|
||||
icon: material/toggle-switch-off-outline
|
||||
name: Switch to dark mode
|
||||
primary: teal
|
||||
accent: purple
|
||||
- scheme: slate
|
||||
toggle:
|
||||
icon: material/toggle-switch
|
||||
name: Switch to light mode
|
||||
primary: teal
|
||||
accent: lime
|
||||
font:
|
||||
text: Roboto
|
||||
code: Roboto Mono
|
||||
icon:
|
||||
repo: fontawesome/brands/github
|
||||
|
||||
markdown_extensions:
|
||||
- pymdownx.highlight:
|
||||
anchor_linenums: true
|
||||
- pymdownx.inlinehilite
|
||||
- pymdownx.snippets
|
||||
- admonition
|
||||
- pymdownx.arithmatex:
|
||||
generic: true
|
||||
- footnotes
|
||||
- pymdownx.details
|
||||
- pymdownx.superfences:
|
||||
custom_fences:
|
||||
- name: mermaid
|
||||
class: mermaid
|
||||
format: !!python/name:pymdownx.superfences.fence_code_format
|
||||
- pymdownx.mark
|
||||
- attr_list
|
||||
- pymdownx.emoji:
|
||||
emoji_index: !!python/name:materialx.emoji.twemoji
|
||||
emoji_generator: !!python/name:materialx.emoji.to_svg
|
||||
|
||||
plugins:
|
||||
- search
|
||||
- minify:
|
||||
minify_html: true
|
||||
|
||||
extra:
|
||||
social:
|
||||
- icon: fontawesome/brands/github-alt
|
||||
link: https://github.com/yourusername/multi-agent-best-practices
|
||||
|
||||
nav:
|
||||
- Home: index.md
|
||||
- Core Concepts:
|
||||
- Why Multi-Agent Systems?: concepts/why-multi-agent.md
|
||||
- Limitations of Individual Agents: concepts/limitations.md
|
||||
- Multi-Agent Architecture: concepts/architecture.md
|
||||
- Best Practices:
|
||||
- Implementation Guide: best-practices/implementation.md
|
||||
- Communication Protocols: best-practices/communication.md
|
||||
- Error Handling: best-practices/error-handling.md
|
||||
- Performance Optimization: best-practices/performance.md
|
||||
- FAQ: faq.md
|
||||
- Tips & Troubleshooting: tips.md
|
||||
- Glossary: swarms/glossary.md
|
||||
|
||||
copyright: Copyright © 2024 Multi-Agent LLM Systems
|
Loading…
Reference in new issue