commit
3d3dddaf0c
@ -0,0 +1,60 @@
|
|||||||
|
import random
|
||||||
|
import os
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from swarms.models import OpenAIChat
|
||||||
|
from playground.models.stable_diffusion import StableDiffusion
|
||||||
|
from swarms.structs import Flow, SequentialWorkflow
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
openai_api_key = os.getenv("OPENAI_API_KEY")
|
||||||
|
stability_api_key = os.getenv("STABILITY_API_KEY")
|
||||||
|
|
||||||
|
# Initialize the language model and image generation model
|
||||||
|
llm = OpenAIChat(openai_api_key=openai_api_key, temperature=0.5, max_tokens=3000)
|
||||||
|
sd_api = StableDiffusion(api_key=stability_api_key)
|
||||||
|
|
||||||
|
def run_task(description, product_name, flow, **kwargs):
|
||||||
|
full_description = f"{description} about {product_name}" # Incorporate product name into the task
|
||||||
|
result = flow.run(task=full_description, **kwargs)
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
# Creative Concept Generator
|
||||||
|
class ProductPromptGenerator:
|
||||||
|
def __init__(self, product_name):
|
||||||
|
self.product_name = product_name
|
||||||
|
self.themes = ["lightning", "sunset", "ice cave", "space", "forest", "ocean", "mountains", "cityscape"]
|
||||||
|
self.styles = ["translucent", "floating in mid-air", "expanded into pieces", "glowing", "mirrored", "futuristic"]
|
||||||
|
self.contexts = ["high realism product ad (extremely creative)"]
|
||||||
|
|
||||||
|
def generate_prompt(self):
|
||||||
|
theme = random.choice(self.themes)
|
||||||
|
style = random.choice(self.styles)
|
||||||
|
context = random.choice(self.contexts)
|
||||||
|
return f"{theme} inside a {style} {self.product_name}, {context}"
|
||||||
|
|
||||||
|
# User input
|
||||||
|
product_name = input("Enter a product name for ad creation (e.g., 'PS5', 'AirPods', 'Kirkland Vodka'): ")
|
||||||
|
|
||||||
|
# Generate creative concept
|
||||||
|
prompt_generator = ProductPromptGenerator(product_name)
|
||||||
|
creative_prompt = prompt_generator.generate_prompt()
|
||||||
|
|
||||||
|
# Run tasks using Flow
|
||||||
|
concept_flow = Flow(llm=llm, max_loops=1, dashboard=False)
|
||||||
|
design_flow = Flow(llm=llm, max_loops=1, dashboard=False)
|
||||||
|
copywriting_flow = Flow(llm=llm, max_loops=1, dashboard=False)
|
||||||
|
|
||||||
|
# Execute tasks
|
||||||
|
concept_result = run_task("Generate a creative concept", product_name, concept_flow)
|
||||||
|
design_result = run_task("Suggest visual design ideas", product_name, design_flow)
|
||||||
|
copywriting_result = run_task("Create compelling ad copy for the product photo", product_name, copywriting_flow)
|
||||||
|
|
||||||
|
# Generate product image
|
||||||
|
image_paths = sd_api.run(creative_prompt)
|
||||||
|
|
||||||
|
# Output the results
|
||||||
|
print("Creative Concept:", concept_result)
|
||||||
|
print("Design Ideas:", design_result)
|
||||||
|
print("Ad Copy:", copywriting_result)
|
||||||
|
print("Image Path:", image_paths[0] if image_paths else "No image generated")
|
@ -1,112 +0,0 @@
|
|||||||
import os
|
|
||||||
import base64
|
|
||||||
import requests
|
|
||||||
from dotenv import load_dotenv
|
|
||||||
from typing import List
|
|
||||||
|
|
||||||
load_dotenv()
|
|
||||||
|
|
||||||
class StableDiffusion:
|
|
||||||
"""
|
|
||||||
A class to interact with the Stable Diffusion API for image generation.
|
|
||||||
|
|
||||||
Attributes:
|
|
||||||
-----------
|
|
||||||
api_key : str
|
|
||||||
The API key for accessing the Stable Diffusion API.
|
|
||||||
api_host : str
|
|
||||||
The host URL of the Stable Diffusion API.
|
|
||||||
engine_id : str
|
|
||||||
The ID of the Stable Diffusion engine.
|
|
||||||
headers : dict
|
|
||||||
The headers for the API request.
|
|
||||||
output_dir : str
|
|
||||||
Directory where generated images will be saved.
|
|
||||||
|
|
||||||
Methods:
|
|
||||||
--------
|
|
||||||
generate_image(prompt: str, cfg_scale: int, height: int, width: int, samples: int, steps: int) -> List[str]:
|
|
||||||
Generates images based on a text prompt and returns a list of file paths to the generated images.
|
|
||||||
"""
|
|
||||||
|
|
||||||
def __init__(self, api_key: str, api_host: str = "https://api.stability.ai"):
|
|
||||||
"""
|
|
||||||
Initializes the StableDiffusion class with the provided API key and host.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
-----------
|
|
||||||
api_key : str
|
|
||||||
The API key for accessing the Stable Diffusion API.
|
|
||||||
api_host : str
|
|
||||||
The host URL of the Stable Diffusion API. Default is "https://api.stability.ai".
|
|
||||||
"""
|
|
||||||
self.api_key = api_key
|
|
||||||
self.api_host = api_host
|
|
||||||
self.engine_id = "stable-diffusion-v1-6"
|
|
||||||
self.headers = {
|
|
||||||
"Authorization": f"Bearer {self.api_key}",
|
|
||||||
"Content-Type": "application/json",
|
|
||||||
"Accept": "application/json"
|
|
||||||
}
|
|
||||||
self.output_dir = "images"
|
|
||||||
os.makedirs(self.output_dir, exist_ok=True)
|
|
||||||
|
|
||||||
def generate_image(self, prompt: str, cfg_scale: int = 7, height: int = 1024, width: int = 1024, samples: int = 1, steps: int = 30) -> List[str]:
|
|
||||||
"""
|
|
||||||
Generates images based on a text prompt.
|
|
||||||
|
|
||||||
Parameters:
|
|
||||||
-----------
|
|
||||||
prompt : str
|
|
||||||
The text prompt based on which the image will be generated.
|
|
||||||
cfg_scale : int
|
|
||||||
CFG scale parameter for image generation. Default is 7.
|
|
||||||
height : int
|
|
||||||
Height of the generated image. Default is 1024.
|
|
||||||
width : int
|
|
||||||
Width of the generated image. Default is 1024.
|
|
||||||
samples : int
|
|
||||||
Number of images to generate. Default is 1.
|
|
||||||
steps : int
|
|
||||||
Number of steps for the generation process. Default is 30.
|
|
||||||
|
|
||||||
Returns:
|
|
||||||
--------
|
|
||||||
List[str]:
|
|
||||||
A list of paths to the generated images.
|
|
||||||
|
|
||||||
Raises:
|
|
||||||
-------
|
|
||||||
Exception:
|
|
||||||
If the API response is not 200 (OK).
|
|
||||||
"""
|
|
||||||
response = requests.post(
|
|
||||||
f"{self.api_host}/v1/generation/{self.engine_id}/text-to-image",
|
|
||||||
headers=self.headers,
|
|
||||||
json={
|
|
||||||
"text_prompts": [{"text": prompt}],
|
|
||||||
"cfg_scale": cfg_scale,
|
|
||||||
"height": height,
|
|
||||||
"width": width,
|
|
||||||
"samples": samples,
|
|
||||||
"steps": steps,
|
|
||||||
},
|
|
||||||
)
|
|
||||||
|
|
||||||
if response.status_code != 200:
|
|
||||||
raise Exception(f"Non-200 response: {response.text}")
|
|
||||||
|
|
||||||
data = response.json()
|
|
||||||
image_paths = []
|
|
||||||
for i, image in enumerate(data["artifacts"]):
|
|
||||||
image_path = os.path.join(self.output_dir, f"v1_txt2img_{i}.png")
|
|
||||||
with open(image_path, "wb") as f:
|
|
||||||
f.write(base64.b64decode(image["base64"]))
|
|
||||||
image_paths.append(image_path)
|
|
||||||
|
|
||||||
return image_paths
|
|
||||||
|
|
||||||
# Usage example:
|
|
||||||
# sd = StableDiffusion("your-api-key")
|
|
||||||
# images = sd.generate_image("A scenic landscape with mountains")
|
|
||||||
# print(images)
|
|
@ -0,0 +1,125 @@
|
|||||||
|
import base64
|
||||||
|
import os
|
||||||
|
import requests
|
||||||
|
import uuid
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
from typing import List
|
||||||
|
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
class StableDiffusion:
|
||||||
|
"""
|
||||||
|
A class to interact with the Stable Diffusion API for generating images from text prompts.
|
||||||
|
|
||||||
|
Attributes:
|
||||||
|
-----------
|
||||||
|
api_key : str
|
||||||
|
The API key for accessing the Stable Diffusion API.
|
||||||
|
api_host : str
|
||||||
|
The host URL for the Stable Diffusion API.
|
||||||
|
engine_id : str
|
||||||
|
The engine ID for the Stable Diffusion API.
|
||||||
|
cfg_scale : int
|
||||||
|
Configuration scale for image generation.
|
||||||
|
height : int
|
||||||
|
The height of the generated image.
|
||||||
|
width : int
|
||||||
|
The width of the generated image.
|
||||||
|
samples : int
|
||||||
|
The number of samples to generate.
|
||||||
|
steps : int
|
||||||
|
The number of steps for the generation process.
|
||||||
|
output_dir : str
|
||||||
|
Directory where the generated images will be saved.
|
||||||
|
|
||||||
|
Methods:
|
||||||
|
--------
|
||||||
|
__init__(self, api_key: str, api_host: str, cfg_scale: int, height: int, width: int, samples: int, steps: int):
|
||||||
|
Initializes the StableDiffusion instance with provided parameters.
|
||||||
|
|
||||||
|
generate_image(self, task: str) -> List[str]:
|
||||||
|
Generates an image based on the provided text prompt and returns the paths of the saved images.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, api_key: str, api_host: str = "https://api.stability.ai", cfg_scale: int = 7, height: int = 1024, width: int = 1024, samples: int = 1, steps: int = 30):
|
||||||
|
"""
|
||||||
|
Initialize the StableDiffusion class with API configurations.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
-----------
|
||||||
|
api_key : str
|
||||||
|
The API key for accessing the Stable Diffusion API.
|
||||||
|
api_host : str
|
||||||
|
The host URL for the Stable Diffusion API.
|
||||||
|
cfg_scale : int
|
||||||
|
Configuration scale for image generation.
|
||||||
|
height : int
|
||||||
|
The height of the generated image.
|
||||||
|
width : int
|
||||||
|
The width of the generated image.
|
||||||
|
samples : int
|
||||||
|
The number of samples to generate.
|
||||||
|
steps : int
|
||||||
|
The number of steps for the generation process.
|
||||||
|
"""
|
||||||
|
self.api_key = api_key
|
||||||
|
self.api_host = api_host
|
||||||
|
self.engine_id = "stable-diffusion-v1-6"
|
||||||
|
self.cfg_scale = cfg_scale
|
||||||
|
self.height = height
|
||||||
|
self.width = width
|
||||||
|
self.samples = samples
|
||||||
|
self.steps = steps
|
||||||
|
self.headers = {
|
||||||
|
"Authorization": f"Bearer {self.api_key}",
|
||||||
|
"Content-Type": "application/json",
|
||||||
|
"Accept": "application/json"
|
||||||
|
}
|
||||||
|
self.output_dir = "images"
|
||||||
|
os.makedirs(self.output_dir, exist_ok=True)
|
||||||
|
|
||||||
|
def run(self, task: str) -> List[str]:
|
||||||
|
"""
|
||||||
|
Generates an image based on a given text prompt.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
-----------
|
||||||
|
task : str
|
||||||
|
The text prompt based on which the image will be generated.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
--------
|
||||||
|
List[str]:
|
||||||
|
A list of file paths where the generated images are saved.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
-------
|
||||||
|
Exception:
|
||||||
|
If the API request fails and returns a non-200 response.
|
||||||
|
"""
|
||||||
|
response = requests.post(
|
||||||
|
f"{self.api_host}/v1/generation/{self.engine_id}/text-to-image",
|
||||||
|
headers=self.headers,
|
||||||
|
json={
|
||||||
|
"text_prompts": [{"text": task}],
|
||||||
|
"cfg_scale": self.cfg_scale,
|
||||||
|
"height": self.height,
|
||||||
|
"width": self.width,
|
||||||
|
"samples": self.samples,
|
||||||
|
"steps": self.steps,
|
||||||
|
},
|
||||||
|
)
|
||||||
|
|
||||||
|
if response.status_code != 200:
|
||||||
|
raise Exception(f"Non-200 response: {response.text}")
|
||||||
|
|
||||||
|
data = response.json()
|
||||||
|
image_paths = []
|
||||||
|
for i, image in enumerate(data["artifacts"]):
|
||||||
|
unique_id = uuid.uuid4() # Generate a unique identifier
|
||||||
|
image_path = os.path.join(self.output_dir, f"{unique_id}_v1_txt2img_{i}.png")
|
||||||
|
with open(image_path, "wb") as f:
|
||||||
|
f.write(base64.b64decode(image["base64"]))
|
||||||
|
image_paths.append(image_path)
|
||||||
|
|
||||||
|
return image_paths
|
Loading…
Reference in new issue