|
|
|
@ -32,11 +32,11 @@ from langchain.chains.conversation.memory import ConversationBufferMemory
|
|
|
|
|
from langchain.llms.openai import OpenAI
|
|
|
|
|
|
|
|
|
|
# Grounding DINO
|
|
|
|
|
# import groundingdino.datasets.transforms as T
|
|
|
|
|
# from groundingdino.models import build_model
|
|
|
|
|
# from groundingdino.util import box_ops
|
|
|
|
|
# from groundingdino.util.slconfig import SLConfig
|
|
|
|
|
# from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
|
|
|
|
import groundingdino.datasets.transforms as T
|
|
|
|
|
from groundingdino.models import build_model
|
|
|
|
|
from groundingdino.util import box_ops
|
|
|
|
|
from groundingdino.util.slconfig import SLConfig
|
|
|
|
|
from groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
|
|
|
|
|
|
|
|
|
|
# segment anything #
|
|
|
|
|
from segment_anything import build_sam, SamPredictor, SamAutomaticMaskGenerator
|
|
|
|
@ -1023,149 +1023,149 @@ class Segmenting:
|
|
|
|
|
)
|
|
|
|
|
return updated_image_path
|
|
|
|
|
|
|
|
|
|
# class Text2Box:
|
|
|
|
|
# def __init__(self, device):
|
|
|
|
|
# print(f"Initializing ObjectDetection to {device}")
|
|
|
|
|
# self.device = device
|
|
|
|
|
# self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
|
|
|
|
# self.model_checkpoint_path = os.path.join("checkpoints","groundingdino")
|
|
|
|
|
# self.model_config_path = os.path.join("checkpoints","grounding_config.py")
|
|
|
|
|
# self.download_parameters()
|
|
|
|
|
# self.box_threshold = 0.3
|
|
|
|
|
# self.text_threshold = 0.25
|
|
|
|
|
# self.grounding = (self.load_model()).to(self.device)
|
|
|
|
|
|
|
|
|
|
# def download_parameters(self):
|
|
|
|
|
# url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
|
|
|
|
|
# if not os.path.exists(self.model_checkpoint_path):
|
|
|
|
|
# wget.download(url,out=self.model_checkpoint_path)
|
|
|
|
|
# config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
|
|
|
|
# if not os.path.exists(self.model_config_path):
|
|
|
|
|
# wget.download(config_url,out=self.model_config_path)
|
|
|
|
|
# def load_image(self,image_path):
|
|
|
|
|
# # load image
|
|
|
|
|
# image_pil = Image.open(image_path).convert("RGB") # load image
|
|
|
|
|
|
|
|
|
|
# transform = T.Compose(
|
|
|
|
|
# [
|
|
|
|
|
# T.RandomResize([512], max_size=1333),
|
|
|
|
|
# T.ToTensor(),
|
|
|
|
|
# T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
|
|
|
# ]
|
|
|
|
|
# )
|
|
|
|
|
# image, _ = transform(image_pil, None) # 3, h, w
|
|
|
|
|
# return image_pil, image
|
|
|
|
|
|
|
|
|
|
# def load_model(self):
|
|
|
|
|
# args = SLConfig.fromfile(self.model_config_path)
|
|
|
|
|
# args.device = self.device
|
|
|
|
|
# model = build_model(args)
|
|
|
|
|
# checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
|
|
|
|
|
# load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
|
|
|
|
# print(load_res)
|
|
|
|
|
# _ = model.eval()
|
|
|
|
|
# return model
|
|
|
|
|
|
|
|
|
|
# def get_grounding_boxes(self, image, caption, with_logits=True):
|
|
|
|
|
# caption = caption.lower()
|
|
|
|
|
# caption = caption.strip()
|
|
|
|
|
# if not caption.endswith("."):
|
|
|
|
|
# caption = caption + "."
|
|
|
|
|
# image = image.to(self.device)
|
|
|
|
|
# with torch.no_grad():
|
|
|
|
|
# outputs = self.grounding(image[None], captions=[caption])
|
|
|
|
|
# logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
|
|
|
|
# boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
|
|
|
|
# logits.shape[0]
|
|
|
|
|
|
|
|
|
|
# # filter output
|
|
|
|
|
# logits_filt = logits.clone()
|
|
|
|
|
# boxes_filt = boxes.clone()
|
|
|
|
|
# filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
|
|
|
|
|
# logits_filt = logits_filt[filt_mask] # num_filt, 256
|
|
|
|
|
# boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
|
|
|
|
# logits_filt.shape[0]
|
|
|
|
|
|
|
|
|
|
# # get phrase
|
|
|
|
|
# tokenlizer = self.grounding.tokenizer
|
|
|
|
|
# tokenized = tokenlizer(caption)
|
|
|
|
|
# # build pred
|
|
|
|
|
# pred_phrases = []
|
|
|
|
|
# for logit, box in zip(logits_filt, boxes_filt):
|
|
|
|
|
# pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
|
|
|
|
|
# if with_logits:
|
|
|
|
|
# pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
|
|
|
|
# else:
|
|
|
|
|
# pred_phrases.append(pred_phrase)
|
|
|
|
|
|
|
|
|
|
# return boxes_filt, pred_phrases
|
|
|
|
|
class Text2Box:
|
|
|
|
|
def __init__(self, device):
|
|
|
|
|
print(f"Initializing ObjectDetection to {device}")
|
|
|
|
|
self.device = device
|
|
|
|
|
self.torch_dtype = torch.float16 if 'cuda' in device else torch.float32
|
|
|
|
|
self.model_checkpoint_path = os.path.join("checkpoints","groundingdino")
|
|
|
|
|
self.model_config_path = os.path.join("checkpoints","grounding_config.py")
|
|
|
|
|
self.download_parameters()
|
|
|
|
|
self.box_threshold = 0.3
|
|
|
|
|
self.text_threshold = 0.25
|
|
|
|
|
self.grounding = (self.load_model()).to(self.device)
|
|
|
|
|
|
|
|
|
|
def download_parameters(self):
|
|
|
|
|
url = "https://github.com/IDEA-Research/GroundingDINO/releases/download/v0.1.0-alpha/groundingdino_swint_ogc.pth"
|
|
|
|
|
if not os.path.exists(self.model_checkpoint_path):
|
|
|
|
|
wget.download(url,out=self.model_checkpoint_path)
|
|
|
|
|
config_url = "https://raw.githubusercontent.com/IDEA-Research/GroundingDINO/main/groundingdino/config/GroundingDINO_SwinT_OGC.py"
|
|
|
|
|
if not os.path.exists(self.model_config_path):
|
|
|
|
|
wget.download(config_url,out=self.model_config_path)
|
|
|
|
|
def load_image(self,image_path):
|
|
|
|
|
# load image
|
|
|
|
|
image_pil = Image.open(image_path).convert("RGB") # load image
|
|
|
|
|
|
|
|
|
|
transform = T.Compose(
|
|
|
|
|
[
|
|
|
|
|
T.RandomResize([512], max_size=1333),
|
|
|
|
|
T.ToTensor(),
|
|
|
|
|
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
|
|
|
|
]
|
|
|
|
|
)
|
|
|
|
|
image, _ = transform(image_pil, None) # 3, h, w
|
|
|
|
|
return image_pil, image
|
|
|
|
|
|
|
|
|
|
def load_model(self):
|
|
|
|
|
args = SLConfig.fromfile(self.model_config_path)
|
|
|
|
|
args.device = self.device
|
|
|
|
|
model = build_model(args)
|
|
|
|
|
checkpoint = torch.load(self.model_checkpoint_path, map_location="cpu")
|
|
|
|
|
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
|
|
|
|
|
print(load_res)
|
|
|
|
|
_ = model.eval()
|
|
|
|
|
return model
|
|
|
|
|
|
|
|
|
|
def get_grounding_boxes(self, image, caption, with_logits=True):
|
|
|
|
|
caption = caption.lower()
|
|
|
|
|
caption = caption.strip()
|
|
|
|
|
if not caption.endswith("."):
|
|
|
|
|
caption = caption + "."
|
|
|
|
|
image = image.to(self.device)
|
|
|
|
|
with torch.no_grad():
|
|
|
|
|
outputs = self.grounding(image[None], captions=[caption])
|
|
|
|
|
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
|
|
|
|
|
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
|
|
|
|
|
logits.shape[0]
|
|
|
|
|
|
|
|
|
|
# filter output
|
|
|
|
|
logits_filt = logits.clone()
|
|
|
|
|
boxes_filt = boxes.clone()
|
|
|
|
|
filt_mask = logits_filt.max(dim=1)[0] > self.box_threshold
|
|
|
|
|
logits_filt = logits_filt[filt_mask] # num_filt, 256
|
|
|
|
|
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
|
|
|
|
|
logits_filt.shape[0]
|
|
|
|
|
|
|
|
|
|
# get phrase
|
|
|
|
|
tokenlizer = self.grounding.tokenizer
|
|
|
|
|
tokenized = tokenlizer(caption)
|
|
|
|
|
# build pred
|
|
|
|
|
pred_phrases = []
|
|
|
|
|
for logit, box in zip(logits_filt, boxes_filt):
|
|
|
|
|
pred_phrase = get_phrases_from_posmap(logit > self.text_threshold, tokenized, tokenlizer)
|
|
|
|
|
if with_logits:
|
|
|
|
|
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
|
|
|
|
|
else:
|
|
|
|
|
pred_phrases.append(pred_phrase)
|
|
|
|
|
|
|
|
|
|
return boxes_filt, pred_phrases
|
|
|
|
|
|
|
|
|
|
# def plot_boxes_to_image(self, image_pil, tgt):
|
|
|
|
|
# H, W = tgt["size"]
|
|
|
|
|
# boxes = tgt["boxes"]
|
|
|
|
|
# labels = tgt["labels"]
|
|
|
|
|
# assert len(boxes) == len(labels), "boxes and labels must have same length"
|
|
|
|
|
|
|
|
|
|
# draw = ImageDraw.Draw(image_pil)
|
|
|
|
|
# mask = Image.new("L", image_pil.size, 0)
|
|
|
|
|
# mask_draw = ImageDraw.Draw(mask)
|
|
|
|
|
|
|
|
|
|
# # draw boxes and masks
|
|
|
|
|
# for box, label in zip(boxes, labels):
|
|
|
|
|
# # from 0..1 to 0..W, 0..H
|
|
|
|
|
# box = box * torch.Tensor([W, H, W, H])
|
|
|
|
|
# # from xywh to xyxy
|
|
|
|
|
# box[:2] -= box[2:] / 2
|
|
|
|
|
# box[2:] += box[:2]
|
|
|
|
|
# # random color
|
|
|
|
|
# color = tuple(np.random.randint(0, 255, size=3).tolist())
|
|
|
|
|
# # draw
|
|
|
|
|
# x0, y0, x1, y1 = box
|
|
|
|
|
# x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
|
|
|
|
|
|
|
|
|
# draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
|
|
|
|
# # draw.text((x0, y0), str(label), fill=color)
|
|
|
|
|
|
|
|
|
|
# font = ImageFont.load_default()
|
|
|
|
|
# if hasattr(font, "getbbox"):
|
|
|
|
|
# bbox = draw.textbbox((x0, y0), str(label), font)
|
|
|
|
|
# else:
|
|
|
|
|
# w, h = draw.textsize(str(label), font)
|
|
|
|
|
# bbox = (x0, y0, w + x0, y0 + h)
|
|
|
|
|
# # bbox = draw.textbbox((x0, y0), str(label))
|
|
|
|
|
# draw.rectangle(bbox, fill=color)
|
|
|
|
|
# draw.text((x0, y0), str(label), fill="white")
|
|
|
|
|
|
|
|
|
|
# mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2)
|
|
|
|
|
|
|
|
|
|
# return image_pil, mask
|
|
|
|
|
def plot_boxes_to_image(self, image_pil, tgt):
|
|
|
|
|
H, W = tgt["size"]
|
|
|
|
|
boxes = tgt["boxes"]
|
|
|
|
|
labels = tgt["labels"]
|
|
|
|
|
assert len(boxes) == len(labels), "boxes and labels must have same length"
|
|
|
|
|
|
|
|
|
|
draw = ImageDraw.Draw(image_pil)
|
|
|
|
|
mask = Image.new("L", image_pil.size, 0)
|
|
|
|
|
mask_draw = ImageDraw.Draw(mask)
|
|
|
|
|
|
|
|
|
|
# draw boxes and masks
|
|
|
|
|
for box, label in zip(boxes, labels):
|
|
|
|
|
# from 0..1 to 0..W, 0..H
|
|
|
|
|
box = box * torch.Tensor([W, H, W, H])
|
|
|
|
|
# from xywh to xyxy
|
|
|
|
|
box[:2] -= box[2:] / 2
|
|
|
|
|
box[2:] += box[:2]
|
|
|
|
|
# random color
|
|
|
|
|
color = tuple(np.random.randint(0, 255, size=3).tolist())
|
|
|
|
|
# draw
|
|
|
|
|
x0, y0, x1, y1 = box
|
|
|
|
|
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
|
|
|
|
|
|
|
|
|
|
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
|
|
|
|
|
# draw.text((x0, y0), str(label), fill=color)
|
|
|
|
|
|
|
|
|
|
font = ImageFont.load_default()
|
|
|
|
|
if hasattr(font, "getbbox"):
|
|
|
|
|
bbox = draw.textbbox((x0, y0), str(label), font)
|
|
|
|
|
else:
|
|
|
|
|
w, h = draw.textsize(str(label), font)
|
|
|
|
|
bbox = (x0, y0, w + x0, y0 + h)
|
|
|
|
|
# bbox = draw.textbbox((x0, y0), str(label))
|
|
|
|
|
draw.rectangle(bbox, fill=color)
|
|
|
|
|
draw.text((x0, y0), str(label), fill="white")
|
|
|
|
|
|
|
|
|
|
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=2)
|
|
|
|
|
|
|
|
|
|
return image_pil, mask
|
|
|
|
|
|
|
|
|
|
# @prompts(name="Detect the Give Object",
|
|
|
|
|
# description="useful when you only want to detect or find out given objects in the picture"
|
|
|
|
|
# "The input to this tool should be a comma separated string of two, "
|
|
|
|
|
# "representing the image_path, the text description of the object to be found")
|
|
|
|
|
# def inference(self, inputs):
|
|
|
|
|
# image_path, det_prompt = inputs.split(",")
|
|
|
|
|
# print(f"image_path={image_path}, text_prompt={det_prompt}")
|
|
|
|
|
# image_pil, image = self.load_image(image_path)
|
|
|
|
|
|
|
|
|
|
# boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt)
|
|
|
|
|
|
|
|
|
|
# size = image_pil.size
|
|
|
|
|
# pred_dict = {
|
|
|
|
|
# "boxes": boxes_filt,
|
|
|
|
|
# "size": [size[1], size[0]], # H,W
|
|
|
|
|
# "labels": pred_phrases,}
|
|
|
|
|
|
|
|
|
|
# image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0]
|
|
|
|
|
|
|
|
|
|
# updated_image_path = get_new_image_name(image_path, func_name="detect-something")
|
|
|
|
|
# updated_image = image_with_box.resize(size)
|
|
|
|
|
# updated_image.save(updated_image_path)
|
|
|
|
|
# print(
|
|
|
|
|
# f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, "
|
|
|
|
|
# f"Output Image: {updated_image_path}")
|
|
|
|
|
# return updated_image_path
|
|
|
|
|
@prompts(name="Detect the Give Object",
|
|
|
|
|
description="useful when you only want to detect or find out given objects in the picture"
|
|
|
|
|
"The input to this tool should be a comma separated string of two, "
|
|
|
|
|
"representing the image_path, the text description of the object to be found")
|
|
|
|
|
def inference(self, inputs):
|
|
|
|
|
image_path, det_prompt = inputs.split(",")
|
|
|
|
|
print(f"image_path={image_path}, text_prompt={det_prompt}")
|
|
|
|
|
image_pil, image = self.load_image(image_path)
|
|
|
|
|
|
|
|
|
|
boxes_filt, pred_phrases = self.get_grounding_boxes(image, det_prompt)
|
|
|
|
|
|
|
|
|
|
size = image_pil.size
|
|
|
|
|
pred_dict = {
|
|
|
|
|
"boxes": boxes_filt,
|
|
|
|
|
"size": [size[1], size[0]], # H,W
|
|
|
|
|
"labels": pred_phrases,}
|
|
|
|
|
|
|
|
|
|
image_with_box = self.plot_boxes_to_image(image_pil, pred_dict)[0]
|
|
|
|
|
|
|
|
|
|
updated_image_path = get_new_image_name(image_path, func_name="detect-something")
|
|
|
|
|
updated_image = image_with_box.resize(size)
|
|
|
|
|
updated_image.save(updated_image_path)
|
|
|
|
|
print(
|
|
|
|
|
f"\nProcessed ObejectDetecting, Input Image: {image_path}, Object to be Detect {det_prompt}, "
|
|
|
|
|
f"Output Image: {updated_image_path}")
|
|
|
|
|
return updated_image_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class Inpainting:
|
|
|
|
|