Merge e397b8b19e
into 221e9419ec
commit
422b02b5b8
@ -0,0 +1,22 @@
|
|||||||
|
[flake8]
|
||||||
|
max-line-length = 88
|
||||||
|
extend-ignore = E203, W503
|
||||||
|
exclude =
|
||||||
|
.git,
|
||||||
|
__pycache__,
|
||||||
|
build,
|
||||||
|
dist,
|
||||||
|
*.egg-info,
|
||||||
|
.eggs,
|
||||||
|
.tox,
|
||||||
|
.venv,
|
||||||
|
venv,
|
||||||
|
.env,
|
||||||
|
.pytest_cache,
|
||||||
|
.coverage,
|
||||||
|
htmlcov,
|
||||||
|
.mypy_cache,
|
||||||
|
.ruff_cache
|
||||||
|
per-file-ignores =
|
||||||
|
__init__.py: F401
|
||||||
|
max-complexity = 10
|
@ -0,0 +1,106 @@
|
|||||||
|
from swarms.utils.typedb_wrapper import TypeDBWrapper, TypeDBConfig
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Initialize TypeDB wrapper with custom configuration
|
||||||
|
config = TypeDBConfig(
|
||||||
|
uri="localhost:1729",
|
||||||
|
database="swarms_example",
|
||||||
|
username="admin",
|
||||||
|
password="password"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Define schema for a simple knowledge graph
|
||||||
|
schema = """
|
||||||
|
define
|
||||||
|
person sub entity,
|
||||||
|
owns name: string,
|
||||||
|
owns age: long,
|
||||||
|
plays role;
|
||||||
|
|
||||||
|
role sub entity,
|
||||||
|
owns title: string,
|
||||||
|
owns department: string;
|
||||||
|
|
||||||
|
works_at sub relation,
|
||||||
|
relates person,
|
||||||
|
relates role;
|
||||||
|
"""
|
||||||
|
|
||||||
|
# Example data insertion
|
||||||
|
insert_queries = [
|
||||||
|
"""
|
||||||
|
insert
|
||||||
|
$p isa person, has name "John Doe", has age 30;
|
||||||
|
$r isa role, has title "Software Engineer", has department "Engineering";
|
||||||
|
(person: $p, role: $r) isa works_at;
|
||||||
|
""",
|
||||||
|
"""
|
||||||
|
insert
|
||||||
|
$p isa person, has name "Jane Smith", has age 28;
|
||||||
|
$r isa role, has title "Data Scientist", has department "Data Science";
|
||||||
|
(person: $p, role: $r) isa works_at;
|
||||||
|
"""
|
||||||
|
]
|
||||||
|
|
||||||
|
# Example queries
|
||||||
|
query_queries = [
|
||||||
|
# Get all people
|
||||||
|
"match $p isa person; get;",
|
||||||
|
|
||||||
|
# Get people in Engineering department
|
||||||
|
"""
|
||||||
|
match
|
||||||
|
$p isa person;
|
||||||
|
$r isa role, has department "Engineering";
|
||||||
|
(person: $p, role: $r) isa works_at;
|
||||||
|
get $p;
|
||||||
|
""",
|
||||||
|
|
||||||
|
# Get people with their roles
|
||||||
|
"""
|
||||||
|
match
|
||||||
|
$p isa person, has name $n;
|
||||||
|
$r isa role, has title $t;
|
||||||
|
(person: $p, role: $r) isa works_at;
|
||||||
|
get $n, $t;
|
||||||
|
"""
|
||||||
|
]
|
||||||
|
|
||||||
|
try:
|
||||||
|
with TypeDBWrapper(config) as db:
|
||||||
|
# Define schema
|
||||||
|
print("Defining schema...")
|
||||||
|
db.define_schema(schema)
|
||||||
|
|
||||||
|
# Insert data
|
||||||
|
print("\nInserting data...")
|
||||||
|
for query in insert_queries:
|
||||||
|
db.insert_data(query)
|
||||||
|
|
||||||
|
# Query data
|
||||||
|
print("\nQuerying data...")
|
||||||
|
for i, query in enumerate(query_queries, 1):
|
||||||
|
print(f"\nQuery {i}:")
|
||||||
|
results = db.query_data(query)
|
||||||
|
print(f"Results: {results}")
|
||||||
|
|
||||||
|
# Example of deleting data
|
||||||
|
print("\nDeleting data...")
|
||||||
|
delete_query = """
|
||||||
|
match
|
||||||
|
$p isa person, has name "John Doe";
|
||||||
|
delete $p;
|
||||||
|
"""
|
||||||
|
db.delete_data(delete_query)
|
||||||
|
|
||||||
|
# Verify deletion
|
||||||
|
print("\nVerifying deletion...")
|
||||||
|
verify_query = "match $p isa person, has name $n; get $n;"
|
||||||
|
results = db.query_data(verify_query)
|
||||||
|
print(f"Remaining people: {results}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error: {e}")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,44 @@
|
|||||||
|
from swarms.utils.vllm_wrapper import VLLMWrapper
|
||||||
|
|
||||||
|
def main():
|
||||||
|
# Initialize the vLLM wrapper with a model
|
||||||
|
# Note: You'll need to have the model downloaded or specify a HuggingFace model ID
|
||||||
|
llm = VLLMWrapper(
|
||||||
|
model_name="meta-llama/Llama-2-7b-chat-hf", # Replace with your model path or HF model ID
|
||||||
|
temperature=0.7,
|
||||||
|
max_tokens=1000,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Example task
|
||||||
|
task = "What are the benefits of using vLLM for inference?"
|
||||||
|
|
||||||
|
# Run inference
|
||||||
|
response = llm.run(task)
|
||||||
|
print("Response:", response)
|
||||||
|
|
||||||
|
# Example with system prompt
|
||||||
|
llm_with_system = VLLMWrapper(
|
||||||
|
model_name="meta-llama/Llama-2-7b-chat-hf", # Replace with your model path or HF model ID
|
||||||
|
system_prompt="You are a helpful AI assistant that provides concise answers.",
|
||||||
|
temperature=0.7,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run inference with system prompt
|
||||||
|
response = llm_with_system.run(task)
|
||||||
|
print("\nResponse with system prompt:", response)
|
||||||
|
|
||||||
|
# Example with batched inference
|
||||||
|
tasks = [
|
||||||
|
"What is vLLM?",
|
||||||
|
"How does vLLM improve inference speed?",
|
||||||
|
"What are the main features of vLLM?"
|
||||||
|
]
|
||||||
|
|
||||||
|
responses = llm.batched_run(tasks, batch_size=2)
|
||||||
|
print("\nBatched responses:")
|
||||||
|
for task, response in zip(tasks, responses):
|
||||||
|
print(f"\nTask: {task}")
|
||||||
|
print(f"Response: {response}")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,4 @@
|
|||||||
|
[pyupgrade]
|
||||||
|
py3-plus = True
|
||||||
|
py39-plus = True
|
||||||
|
keep-runtime-typing = True
|
@ -0,0 +1,55 @@
|
|||||||
|
#!/usr/bin/env python3
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
from pathlib import Path
|
||||||
|
|
||||||
|
def run_command(command: list[str], cwd: Path) -> bool:
|
||||||
|
"""Run a command and return True if successful."""
|
||||||
|
try:
|
||||||
|
result = subprocess.run(
|
||||||
|
command,
|
||||||
|
cwd=cwd,
|
||||||
|
capture_output=True,
|
||||||
|
text=True,
|
||||||
|
check=True
|
||||||
|
)
|
||||||
|
return True
|
||||||
|
except subprocess.CalledProcessError as e:
|
||||||
|
print(f"Error running {' '.join(command)}:")
|
||||||
|
print(e.stdout)
|
||||||
|
print(e.stderr, file=sys.stderr)
|
||||||
|
return False
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""Run all code quality checks."""
|
||||||
|
root_dir = Path(__file__).parent.parent
|
||||||
|
success = True
|
||||||
|
|
||||||
|
# Run flake8
|
||||||
|
print("\nRunning flake8...")
|
||||||
|
if not run_command(["flake8", "swarms", "tests"], root_dir):
|
||||||
|
success = False
|
||||||
|
|
||||||
|
# Run pyupgrade
|
||||||
|
print("\nRunning pyupgrade...")
|
||||||
|
if not run_command(["pyupgrade", "--py39-plus", "swarms", "tests"], root_dir):
|
||||||
|
success = False
|
||||||
|
|
||||||
|
# Run black
|
||||||
|
print("\nRunning black...")
|
||||||
|
if not run_command(["black", "--check", "swarms", "tests"], root_dir):
|
||||||
|
success = False
|
||||||
|
|
||||||
|
# Run ruff
|
||||||
|
print("\nRunning ruff...")
|
||||||
|
if not run_command(["ruff", "check", "swarms", "tests"], root_dir):
|
||||||
|
success = False
|
||||||
|
|
||||||
|
if not success:
|
||||||
|
print("\nCode quality checks failed. Please fix the issues and try again.")
|
||||||
|
sys.exit(1)
|
||||||
|
else:
|
||||||
|
print("\nAll code quality checks passed!")
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
@ -0,0 +1,32 @@
|
|||||||
|
from typing import Any, Dict, Optional
|
||||||
|
|
||||||
|
class ToolAgentError(Exception):
|
||||||
|
"""Base exception for all tool agent errors."""
|
||||||
|
def __init__(self, message: str, details: Optional[Dict[str, Any]] = None):
|
||||||
|
self.message = message
|
||||||
|
self.details = details or {}
|
||||||
|
super().__init__(self.message)
|
||||||
|
|
||||||
|
class ToolExecutionError(ToolAgentError):
|
||||||
|
"""Raised when a tool fails to execute."""
|
||||||
|
def __init__(self, tool_name: str, error: Exception, details: Optional[Dict[str, Any]] = None):
|
||||||
|
message = f"Failed to execute tool '{tool_name}': {str(error)}"
|
||||||
|
super().__init__(message, details)
|
||||||
|
|
||||||
|
class ToolValidationError(ToolAgentError):
|
||||||
|
"""Raised when tool parameters fail validation."""
|
||||||
|
def __init__(self, tool_name: str, param_name: str, error: str, details: Optional[Dict[str, Any]] = None):
|
||||||
|
message = f"Validation error for tool '{tool_name}' parameter '{param_name}': {error}"
|
||||||
|
super().__init__(message, details)
|
||||||
|
|
||||||
|
class ToolNotFoundError(ToolAgentError):
|
||||||
|
"""Raised when a requested tool is not found."""
|
||||||
|
def __init__(self, tool_name: str, details: Optional[Dict[str, Any]] = None):
|
||||||
|
message = f"Tool '{tool_name}' not found"
|
||||||
|
super().__init__(message, details)
|
||||||
|
|
||||||
|
class ToolParameterError(ToolAgentError):
|
||||||
|
"""Raised when tool parameters are invalid."""
|
||||||
|
def __init__(self, tool_name: str, error: str, details: Optional[Dict[str, Any]] = None):
|
||||||
|
message = f"Invalid parameters for tool '{tool_name}': {error}"
|
||||||
|
super().__init__(message, details)
|
@ -0,0 +1,168 @@
|
|||||||
|
from typing import Dict, List, Optional, Any, Union
|
||||||
|
from loguru import logger
|
||||||
|
from typedb.client import TypeDB, SessionType, TransactionType
|
||||||
|
from typedb.api.connection.transaction import Transaction
|
||||||
|
from dataclasses import dataclass
|
||||||
|
import json
|
||||||
|
|
||||||
|
@dataclass
|
||||||
|
class TypeDBConfig:
|
||||||
|
"""Configuration for TypeDB connection."""
|
||||||
|
uri: str = "localhost:1729"
|
||||||
|
database: str = "swarms"
|
||||||
|
username: Optional[str] = None
|
||||||
|
password: Optional[str] = None
|
||||||
|
timeout: int = 30
|
||||||
|
|
||||||
|
class TypeDBWrapper:
|
||||||
|
"""
|
||||||
|
A wrapper class for TypeDB that provides graph database operations for Swarms.
|
||||||
|
This class handles connection, schema management, and data operations.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, config: Optional[TypeDBConfig] = None):
|
||||||
|
"""
|
||||||
|
Initialize the TypeDB wrapper with the given configuration.
|
||||||
|
Args:
|
||||||
|
config (Optional[TypeDBConfig]): Configuration for TypeDB connection.
|
||||||
|
"""
|
||||||
|
self.config = config or TypeDBConfig()
|
||||||
|
self.client = None
|
||||||
|
self.session = None
|
||||||
|
self._connect()
|
||||||
|
|
||||||
|
def _connect(self) -> None:
|
||||||
|
"""Establish connection to TypeDB."""
|
||||||
|
try:
|
||||||
|
self.client = TypeDB.core_client(self.config.uri)
|
||||||
|
if self.config.username and self.config.password:
|
||||||
|
self.session = self.client.session(
|
||||||
|
self.config.database,
|
||||||
|
SessionType.DATA,
|
||||||
|
self.config.username,
|
||||||
|
self.config.password
|
||||||
|
)
|
||||||
|
else:
|
||||||
|
self.session = self.client.session(
|
||||||
|
self.config.database,
|
||||||
|
SessionType.DATA
|
||||||
|
)
|
||||||
|
logger.info(f"Connected to TypeDB at {self.config.uri}")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to connect to TypeDB: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def _ensure_connection(self) -> None:
|
||||||
|
"""Ensure connection is active, reconnect if necessary."""
|
||||||
|
if not self.session or not self.session.is_open():
|
||||||
|
self._connect()
|
||||||
|
|
||||||
|
def define_schema(self, schema: str) -> None:
|
||||||
|
"""
|
||||||
|
Define the database schema.
|
||||||
|
Args:
|
||||||
|
schema (str): TypeQL schema definition.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with self.session.transaction(TransactionType.WRITE) as transaction:
|
||||||
|
transaction.query.define(schema)
|
||||||
|
transaction.commit()
|
||||||
|
logger.info("Schema defined successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to define schema: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def insert_data(self, query: str) -> None:
|
||||||
|
"""
|
||||||
|
Insert data using TypeQL query.
|
||||||
|
Args:
|
||||||
|
query (str): TypeQL insert query.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with self.session.transaction(TransactionType.WRITE) as transaction:
|
||||||
|
transaction.query.insert(query)
|
||||||
|
transaction.commit()
|
||||||
|
logger.info("Data inserted successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to insert data: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def query_data(self, query: str) -> List[Dict[str, Any]]:
|
||||||
|
"""
|
||||||
|
Query data using TypeQL query.
|
||||||
|
Args:
|
||||||
|
query (str): TypeQL query.
|
||||||
|
Returns:
|
||||||
|
List[Dict[str, Any]]: Query results.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with self.session.transaction(TransactionType.READ) as transaction:
|
||||||
|
result = transaction.query.get(query)
|
||||||
|
return [self._convert_concept_to_dict(concept) for concept in result]
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to query data: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def _convert_concept_to_dict(self, concept: Any) -> Dict[str, Any]:
|
||||||
|
"""
|
||||||
|
Convert a TypeDB concept to a dictionary.
|
||||||
|
Args:
|
||||||
|
concept: TypeDB concept.
|
||||||
|
Returns:
|
||||||
|
Dict[str, Any]: Dictionary representation of the concept.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
if hasattr(concept, "get_type"):
|
||||||
|
concept_type = concept.get_type()
|
||||||
|
if hasattr(concept, "get_value"):
|
||||||
|
return {
|
||||||
|
"type": concept_type.get_label_name(),
|
||||||
|
"value": concept.get_value()
|
||||||
|
}
|
||||||
|
elif hasattr(concept, "get_attributes"):
|
||||||
|
return {
|
||||||
|
"type": concept_type.get_label_name(),
|
||||||
|
"attributes": {
|
||||||
|
attr.get_type().get_label_name(): attr.get_value()
|
||||||
|
for attr in concept.get_attributes()
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return {"type": "unknown", "value": str(concept)}
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to convert concept to dict: {e}")
|
||||||
|
return {"type": "error", "value": str(e)}
|
||||||
|
|
||||||
|
def delete_data(self, query: str) -> None:
|
||||||
|
"""
|
||||||
|
Delete data using TypeQL query.
|
||||||
|
Args:
|
||||||
|
query (str): TypeQL delete query.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
with self.session.transaction(TransactionType.WRITE) as transaction:
|
||||||
|
transaction.query.delete(query)
|
||||||
|
transaction.commit()
|
||||||
|
logger.info("Data deleted successfully")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to delete data: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def close(self) -> None:
|
||||||
|
"""Close the TypeDB connection."""
|
||||||
|
try:
|
||||||
|
if self.session:
|
||||||
|
self.session.close()
|
||||||
|
if self.client:
|
||||||
|
self.client.close()
|
||||||
|
logger.info("TypeDB connection closed")
|
||||||
|
except Exception as e:
|
||||||
|
logger.error(f"Failed to close TypeDB connection: {e}")
|
||||||
|
raise
|
||||||
|
|
||||||
|
def __enter__(self):
|
||||||
|
"""Context manager entry."""
|
||||||
|
return self
|
||||||
|
|
||||||
|
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||||
|
"""Context manager exit."""
|
||||||
|
self.close()
|
@ -0,0 +1,138 @@
|
|||||||
|
from typing import List, Optional, Dict, Any
|
||||||
|
from loguru import logger
|
||||||
|
|
||||||
|
try:
|
||||||
|
from vllm import LLM, SamplingParams
|
||||||
|
except ImportError:
|
||||||
|
import subprocess
|
||||||
|
import sys
|
||||||
|
print("Installing vllm")
|
||||||
|
subprocess.check_call([sys.executable, "-m", "pip", "install", "-U", "vllm"])
|
||||||
|
print("vllm installed")
|
||||||
|
from vllm import LLM, SamplingParams
|
||||||
|
|
||||||
|
class VLLMWrapper:
|
||||||
|
"""
|
||||||
|
A wrapper class for vLLM that provides a similar interface to LiteLLM.
|
||||||
|
This class handles model initialization and inference using vLLM.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
model_name: str = "meta-llama/Llama-2-7b-chat-hf",
|
||||||
|
system_prompt: Optional[str] = None,
|
||||||
|
stream: bool = False,
|
||||||
|
temperature: float = 0.5,
|
||||||
|
max_tokens: int = 4000,
|
||||||
|
max_completion_tokens: int = 4000,
|
||||||
|
tools_list_dictionary: Optional[List[Dict[str, Any]]] = None,
|
||||||
|
tool_choice: str = "auto",
|
||||||
|
parallel_tool_calls: bool = False,
|
||||||
|
*args,
|
||||||
|
**kwargs,
|
||||||
|
):
|
||||||
|
"""
|
||||||
|
Initialize the vLLM wrapper with the given parameters.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_name (str): The name of the model to use. Defaults to "meta-llama/Llama-2-7b-chat-hf".
|
||||||
|
system_prompt (str, optional): The system prompt to use. Defaults to None.
|
||||||
|
stream (bool): Whether to stream the output. Defaults to False.
|
||||||
|
temperature (float): The temperature for sampling. Defaults to 0.5.
|
||||||
|
max_tokens (int): The maximum number of tokens to generate. Defaults to 4000.
|
||||||
|
max_completion_tokens (int): The maximum number of completion tokens. Defaults to 4000.
|
||||||
|
tools_list_dictionary (List[Dict[str, Any]], optional): List of available tools. Defaults to None.
|
||||||
|
tool_choice (str): How to choose tools. Defaults to "auto".
|
||||||
|
parallel_tool_calls (bool): Whether to allow parallel tool calls. Defaults to False.
|
||||||
|
"""
|
||||||
|
self.model_name = model_name
|
||||||
|
self.system_prompt = system_prompt
|
||||||
|
self.stream = stream
|
||||||
|
self.temperature = temperature
|
||||||
|
self.max_tokens = max_tokens
|
||||||
|
self.max_completion_tokens = max_completion_tokens
|
||||||
|
self.tools_list_dictionary = tools_list_dictionary
|
||||||
|
self.tool_choice = tool_choice
|
||||||
|
self.parallel_tool_calls = parallel_tool_calls
|
||||||
|
|
||||||
|
# Initialize vLLM
|
||||||
|
self.llm = LLM(model=model_name, **kwargs)
|
||||||
|
self.sampling_params = SamplingParams(
|
||||||
|
temperature=temperature,
|
||||||
|
max_tokens=max_tokens,
|
||||||
|
)
|
||||||
|
|
||||||
|
def _prepare_prompt(self, task: str) -> str:
|
||||||
|
"""
|
||||||
|
Prepare the prompt for the given task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to prepare the prompt for.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The prepared prompt.
|
||||||
|
"""
|
||||||
|
if self.system_prompt:
|
||||||
|
return f"{self.system_prompt}\n\nUser: {task}\nAssistant:"
|
||||||
|
return f"User: {task}\nAssistant:"
|
||||||
|
|
||||||
|
def run(self, task: str, *args, **kwargs) -> str:
|
||||||
|
"""
|
||||||
|
Run the model for the given task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to run the model for.
|
||||||
|
*args: Additional positional arguments.
|
||||||
|
**kwargs: Additional keyword arguments.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The model's response.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
prompt = self._prepare_prompt(task)
|
||||||
|
|
||||||
|
outputs = self.llm.generate(prompt, self.sampling_params)
|
||||||
|
response = outputs[0].outputs[0].text.strip()
|
||||||
|
|
||||||
|
return response
|
||||||
|
|
||||||
|
except Exception as error:
|
||||||
|
logger.error(f"Error in VLLMWrapper: {error}")
|
||||||
|
raise error
|
||||||
|
|
||||||
|
def __call__(self, task: str, *args, **kwargs) -> str:
|
||||||
|
"""
|
||||||
|
Call the model for the given task.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
task (str): The task to run the model for.
|
||||||
|
*args: Additional positional arguments.
|
||||||
|
**kwargs: Additional keyword arguments.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
str: The model's response.
|
||||||
|
"""
|
||||||
|
return self.run(task, *args, **kwargs)
|
||||||
|
|
||||||
|
def batched_run(self, tasks: List[str], batch_size: int = 10) -> List[str]:
|
||||||
|
"""
|
||||||
|
Run the model for multiple tasks in batches.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
tasks (List[str]): List of tasks to run.
|
||||||
|
batch_size (int): Size of each batch. Defaults to 10.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
List[str]: List of model responses.
|
||||||
|
"""
|
||||||
|
logger.info(f"Running tasks in batches of size {batch_size}. Total tasks: {len(tasks)}")
|
||||||
|
results = []
|
||||||
|
|
||||||
|
for i in range(0, len(tasks), batch_size):
|
||||||
|
batch = tasks[i:i + batch_size]
|
||||||
|
for task in batch:
|
||||||
|
logger.info(f"Running task: {task}")
|
||||||
|
results.append(self.run(task))
|
||||||
|
|
||||||
|
logger.info("Completed all tasks.")
|
||||||
|
return results
|
@ -0,0 +1,129 @@
|
|||||||
|
import pytest
|
||||||
|
from unittest.mock import Mock, patch
|
||||||
|
from swarms.utils.typedb_wrapper import TypeDBWrapper, TypeDBConfig
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def mock_typedb():
|
||||||
|
"""Mock TypeDB client and session."""
|
||||||
|
with patch('swarms.utils.typedb_wrapper.TypeDB') as mock_typedb:
|
||||||
|
mock_client = Mock()
|
||||||
|
mock_session = Mock()
|
||||||
|
mock_typedb.core_client.return_value = mock_client
|
||||||
|
mock_client.session.return_value = mock_session
|
||||||
|
yield mock_typedb, mock_client, mock_session
|
||||||
|
|
||||||
|
@pytest.fixture
|
||||||
|
def typedb_wrapper(mock_typedb):
|
||||||
|
"""Create a TypeDBWrapper instance with mocked dependencies."""
|
||||||
|
config = TypeDBConfig(
|
||||||
|
uri="test:1729",
|
||||||
|
database="test_db",
|
||||||
|
username="test_user",
|
||||||
|
password="test_pass"
|
||||||
|
)
|
||||||
|
return TypeDBWrapper(config)
|
||||||
|
|
||||||
|
def test_initialization(typedb_wrapper):
|
||||||
|
"""Test TypeDBWrapper initialization."""
|
||||||
|
assert typedb_wrapper.config.uri == "test:1729"
|
||||||
|
assert typedb_wrapper.config.database == "test_db"
|
||||||
|
assert typedb_wrapper.config.username == "test_user"
|
||||||
|
assert typedb_wrapper.config.password == "test_pass"
|
||||||
|
|
||||||
|
def test_connect(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test connection to TypeDB."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
typedb_wrapper._connect()
|
||||||
|
|
||||||
|
mock_typedb.core_client.assert_called_once_with("test:1729")
|
||||||
|
mock_client.session.assert_called_once_with(
|
||||||
|
"test_db",
|
||||||
|
"DATA",
|
||||||
|
"test_user",
|
||||||
|
"test_pass"
|
||||||
|
)
|
||||||
|
|
||||||
|
def test_define_schema(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test schema definition."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
schema = "define person sub entity;"
|
||||||
|
|
||||||
|
with patch.object(typedb_wrapper.session, 'transaction') as mock_transaction:
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.define.return_value = None
|
||||||
|
typedb_wrapper.define_schema(schema)
|
||||||
|
|
||||||
|
mock_transaction.assert_called_once_with("WRITE")
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.define.assert_called_once_with(schema)
|
||||||
|
|
||||||
|
def test_insert_data(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test data insertion."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
query = "insert $p isa person;"
|
||||||
|
|
||||||
|
with patch.object(typedb_wrapper.session, 'transaction') as mock_transaction:
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.insert.return_value = None
|
||||||
|
typedb_wrapper.insert_data(query)
|
||||||
|
|
||||||
|
mock_transaction.assert_called_once_with("WRITE")
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.insert.assert_called_once_with(query)
|
||||||
|
|
||||||
|
def test_query_data(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test data querying."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
query = "match $p isa person; get;"
|
||||||
|
mock_result = [Mock()]
|
||||||
|
|
||||||
|
with patch.object(typedb_wrapper.session, 'transaction') as mock_transaction:
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.get.return_value = mock_result
|
||||||
|
result = typedb_wrapper.query_data(query)
|
||||||
|
|
||||||
|
mock_transaction.assert_called_once_with("READ")
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.get.assert_called_once_with(query)
|
||||||
|
assert len(result) == 1
|
||||||
|
|
||||||
|
def test_delete_data(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test data deletion."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
query = "match $p isa person; delete $p;"
|
||||||
|
|
||||||
|
with patch.object(typedb_wrapper.session, 'transaction') as mock_transaction:
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.delete.return_value = None
|
||||||
|
typedb_wrapper.delete_data(query)
|
||||||
|
|
||||||
|
mock_transaction.assert_called_once_with("WRITE")
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.delete.assert_called_once_with(query)
|
||||||
|
|
||||||
|
def test_close(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test connection closing."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
typedb_wrapper.close()
|
||||||
|
|
||||||
|
mock_session.close.assert_called_once()
|
||||||
|
mock_client.close.assert_called_once()
|
||||||
|
|
||||||
|
def test_context_manager(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test context manager functionality."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
|
||||||
|
with typedb_wrapper as db:
|
||||||
|
assert db == typedb_wrapper
|
||||||
|
|
||||||
|
mock_session.close.assert_called_once()
|
||||||
|
mock_client.close.assert_called_once()
|
||||||
|
|
||||||
|
def test_error_handling(typedb_wrapper, mock_typedb):
|
||||||
|
"""Test error handling."""
|
||||||
|
mock_typedb, mock_client, mock_session = mock_typedb
|
||||||
|
|
||||||
|
# Test connection error
|
||||||
|
mock_typedb.core_client.side_effect = Exception("Connection failed")
|
||||||
|
with pytest.raises(Exception) as exc_info:
|
||||||
|
typedb_wrapper._connect()
|
||||||
|
assert "Connection failed" in str(exc_info.value)
|
||||||
|
|
||||||
|
# Test query error
|
||||||
|
with patch.object(typedb_wrapper.session, 'transaction') as mock_transaction:
|
||||||
|
mock_transaction.return_value.__enter__.return_value.query.get.side_effect = Exception("Query failed")
|
||||||
|
with pytest.raises(Exception) as exc_info:
|
||||||
|
typedb_wrapper.query_data("test query")
|
||||||
|
assert "Query failed" in str(exc_info.value)
|
Loading…
Reference in new issue