docs: add presentation script explaining MCP integration with mock multi-agent math and stock servers

pull/819/head
Pavan Kumar 3 months ago committed by ascender1729
parent cb6aae841e
commit 4284eab0d1

@ -74,3 +74,28 @@ mode = "sequential"
[[workflows.workflow.tasks]] [[workflows.workflow.tasks]]
task = "shell.exec" task = "shell.exec"
args = "python -m unittest tests/test_basic_example.py -v" args = "python -m unittest tests/test_basic_example.py -v"
[[workflows.workflow]]
name = "Run MCP Demo"
author = 13983571
mode = "parallel"
[[workflows.workflow.tasks]]
task = "shell.exec"
args = "python examples/mcp_example/mock_stock_server.py &"
[[workflows.workflow.tasks]]
task = "shell.exec"
args = "sleep 2"
[[workflows.workflow.tasks]]
task = "shell.exec"
args = "python examples/mcp_example/mock_math_server.py &"
[[workflows.workflow.tasks]]
task = "shell.exec"
args = "sleep 2"
[[workflows.workflow.tasks]]
task = "shell.exec"
args = "python examples/mcp_example/mock_multi_agent.py"

@ -36,4 +36,4 @@ def calculate_moving_average(prices: list[float], window: int) -> Dict[str, Unio
if __name__ == "__main__": if __name__ == "__main__":
print("Starting Mock Stock Server on port 8001...") print("Starting Mock Stock Server on port 8001...")
mcp.run(transport="sse", transport_kwargs={"host": "0.0.0.0", "port": 8001}) mcp.run(transport="sse", host="0.0.0.0", port=8001)

@ -0,0 +1,79 @@
# MCP Integration Demo Script
## 1. Setup & Architecture Overview
```bash
# Terminal 1: Start Stock Server
python examples/mcp_example/mock_stock_server.py
# Terminal 2: Start Math Server
python examples/mcp_example/mock_math_server.py
# Terminal 3: Start Multi-Agent System
python examples/mcp_example/mock_multi_agent.py
```
## 2. Key Components
### Server-Side:
- FastMCP servers running on ports 8000 and 8001
- Math Server provides: add, multiply, divide operations
- Stock Server provides: price lookup, moving average calculations
### Client-Side:
- Multi-agent system with specialized agents
- MCPServerSseParams for server connections
- Automatic task routing based on agent specialization
## 3. Demo Flow
1. Math Operations:
```
Enter a math problem: 5 plus 3
Enter a math problem: 10 times 4
```
2. Stock Analysis:
```
Enter a math problem: get price of AAPL
Enter a math problem: calculate moving average of [10,20,30,40,50] over 3 periods
```
## 4. Integration Highlights
1. Server Configuration:
- FastMCP initialization
- Tool registration using decorators
- SSE transport setup
2. Client Integration:
- MCPServerSseParams configuration
- Agent specialization
- Task routing logic
3. Communication Flow:
- Client request → Agent processing → MCP server → Response handling
## 5. Code Architecture
### Server Example (Math Server):
```python
@mcp.tool()
def add(a: int, b: int) -> int:
"""Add two numbers together"""
return a + b
```
### Client Example (Multi-Agent):
```python
calculator = MathAgent("Calculator", "http://0.0.0.0:8000")
stock_analyst = MathAgent("StockAnalyst", "http://0.0.0.0:8001")
```
## 6. Key Benefits
1. Modular Architecture
2. Specialized Agents
3. Clean API Integration
4. Scalable Design
Loading…
Cancel
Save