parent
285d36ca6f
commit
43d115300d
@ -0,0 +1,27 @@
|
||||
from swarms.memory import chroma
|
||||
|
||||
# loader = CSVLoader(
|
||||
# file_path="../document_parsing/aipg/aipg.csv",
|
||||
# encoding="utf-8-sig",
|
||||
# )
|
||||
# docs = loader.load()
|
||||
|
||||
|
||||
# Initialize the Qdrant instance
|
||||
# See qdrant documentation on how to run locally
|
||||
qdrant_client = chroma.ChromaClient()
|
||||
|
||||
qdrant_client.add_vectors(["This is a document", "BONSAIIIIIII", "the walking dead"])
|
||||
|
||||
results = qdrant_client.search_vectors("zombie", limit=1)
|
||||
|
||||
print(results)
|
||||
|
||||
# qdrant_client.add_vectors(docs)
|
||||
#
|
||||
# # Perform a search
|
||||
# search_query = "Who is jojo"
|
||||
# search_results = qdrant_client.search_vectors(search_query)
|
||||
# print("Search Results:")
|
||||
# for result in search_results:
|
||||
# print(result)
|
@ -1,753 +1,112 @@
|
||||
from __future__ import annotations
|
||||
from typing import List
|
||||
from chromadb.utils import embedding_functions
|
||||
from httpx import RequestError
|
||||
import chromadb
|
||||
|
||||
import logging
|
||||
import uuid
|
||||
from typing import (
|
||||
TYPE_CHECKING,
|
||||
Any,
|
||||
Callable,
|
||||
Dict,
|
||||
Iterable,
|
||||
List,
|
||||
Optional,
|
||||
Tuple,
|
||||
Type,
|
||||
)
|
||||
|
||||
import numpy as np
|
||||
|
||||
from swarms.structs.document import Document
|
||||
from swarms.models.embeddings_base import Embeddings
|
||||
from langchain.schema.vectorstore import VectorStore
|
||||
from langchain.utils import xor_args
|
||||
from langchain.vectorstores.utils import maximal_marginal_relevance
|
||||
|
||||
if TYPE_CHECKING:
|
||||
import chromadb
|
||||
import chromadb.config
|
||||
from chromadb.api.types import ID, OneOrMany, Where, WhereDocument
|
||||
|
||||
logger = logging.getLogger()
|
||||
DEFAULT_K = 4 # Number of Documents to return.
|
||||
|
||||
|
||||
def _results_to_docs(results: Any) -> List[Document]:
|
||||
return [doc for doc, _ in _results_to_docs_and_scores(results)]
|
||||
|
||||
|
||||
def _results_to_docs_and_scores(
|
||||
results: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
return [
|
||||
# TODO: Chroma can do batch querying,
|
||||
# we shouldn't hard code to the 1st result
|
||||
(
|
||||
Document(
|
||||
page_content=result[0], metadata=result[1] or {}
|
||||
),
|
||||
result[2],
|
||||
)
|
||||
for result in zip(
|
||||
results["documents"][0],
|
||||
results["metadatas"][0],
|
||||
results["distances"][0],
|
||||
)
|
||||
]
|
||||
|
||||
|
||||
class Chroma(VectorStore):
|
||||
"""`ChromaDB` vector store.
|
||||
|
||||
To use, you should have the ``chromadb`` python package installed.
|
||||
|
||||
Example:
|
||||
.. code-block:: python
|
||||
|
||||
from langchain.vectorstores import Chroma
|
||||
from langchain.embeddings.openai import OpenAIEmbeddings
|
||||
|
||||
embeddings = OpenAIEmbeddings()
|
||||
vectorstore = Chroma("langchain_store", embeddings)
|
||||
"""
|
||||
|
||||
_LANGCHAIN_DEFAULT_COLLECTION_NAME = "langchain"
|
||||
|
||||
class ChromaClient:
|
||||
def __init__(
|
||||
self,
|
||||
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
||||
embedding_function: Optional[Embeddings] = None,
|
||||
persist_directory: Optional[str] = None,
|
||||
client_settings: Optional[chromadb.config.Settings] = None,
|
||||
collection_metadata: Optional[Dict] = None,
|
||||
client: Optional[chromadb.Client] = None,
|
||||
relevance_score_fn: Optional[Callable[[float], float]] = None,
|
||||
) -> None:
|
||||
"""Initialize with a Chroma client."""
|
||||
try:
|
||||
import chromadb
|
||||
import chromadb.config
|
||||
except ImportError:
|
||||
raise ImportError(
|
||||
"Could not import chromadb python package. "
|
||||
"Please install it with `pip install chromadb`."
|
||||
)
|
||||
|
||||
if client is not None:
|
||||
self._client_settings = client_settings
|
||||
self._client = client
|
||||
self._persist_directory = persist_directory
|
||||
else:
|
||||
if client_settings:
|
||||
# If client_settings is provided with persist_directory specified,
|
||||
# then it is "in-memory and persisting to disk" mode.
|
||||
client_settings.persist_directory = (
|
||||
persist_directory
|
||||
or client_settings.persist_directory
|
||||
)
|
||||
if client_settings.persist_directory is not None:
|
||||
# Maintain backwards compatibility with chromadb < 0.4.0
|
||||
major, minor, _ = chromadb.__version__.split(".")
|
||||
if int(major) == 0 and int(minor) < 4:
|
||||
client_settings.chroma_db_impl = (
|
||||
"duckdb+parquet"
|
||||
)
|
||||
|
||||
_client_settings = client_settings
|
||||
elif persist_directory:
|
||||
# Maintain backwards compatibility with chromadb < 0.4.0
|
||||
major, minor, _ = chromadb.__version__.split(".")
|
||||
if int(major) == 0 and int(minor) < 4:
|
||||
_client_settings = chromadb.config.Settings(
|
||||
chroma_db_impl="duckdb+parquet",
|
||||
)
|
||||
else:
|
||||
_client_settings = chromadb.config.Settings(
|
||||
is_persistent=True
|
||||
)
|
||||
_client_settings.persist_directory = persist_directory
|
||||
else:
|
||||
_client_settings = chromadb.config.Settings()
|
||||
self._client_settings = _client_settings
|
||||
self._client = chromadb.Client(_client_settings)
|
||||
self._persist_directory = (
|
||||
_client_settings.persist_directory
|
||||
or persist_directory
|
||||
)
|
||||
|
||||
self._embedding_function = embedding_function
|
||||
self._collection = self._client.get_or_create_collection(
|
||||
name=collection_name,
|
||||
embedding_function=(
|
||||
self._embedding_function.embed_documents
|
||||
if self._embedding_function is not None
|
||||
else None
|
||||
),
|
||||
metadata=collection_metadata,
|
||||
)
|
||||
self.override_relevance_score_fn = relevance_score_fn
|
||||
|
||||
@property
|
||||
def embeddings(self) -> Optional[Embeddings]:
|
||||
return self._embedding_function
|
||||
|
||||
@xor_args(("query_texts", "query_embeddings"))
|
||||
def __query_collection(
|
||||
self,
|
||||
query_texts: Optional[List[str]] = None,
|
||||
query_embeddings: Optional[List[List[float]]] = None,
|
||||
n_results: int = 4,
|
||||
where: Optional[Dict[str, str]] = None,
|
||||
where_document: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Query the chroma collection."""
|
||||
collection_name: str = "chromadb-collection",
|
||||
model_name: str = "BAAI/bge-small-en-v1.5",
|
||||
):
|
||||
try:
|
||||
import chromadb # noqa: F401
|
||||
except ImportError:
|
||||
raise ValueError(
|
||||
"Could not import chromadb python package. "
|
||||
"Please install it with `pip install chromadb`."
|
||||
)
|
||||
return self._collection.query(
|
||||
query_texts=query_texts,
|
||||
query_embeddings=query_embeddings,
|
||||
n_results=n_results,
|
||||
where=where,
|
||||
where_document=where_document,
|
||||
**kwargs,
|
||||
)
|
||||
self.client = chromadb.Client()
|
||||
self.collection_name = collection_name
|
||||
self.model = None
|
||||
self.collection = None
|
||||
self._load_embedding_model(model_name)
|
||||
self._setup_collection()
|
||||
except RequestError as e:
|
||||
print(f"Error setting up QdrantClient: {e}")
|
||||
|
||||
def add_texts(
|
||||
self,
|
||||
texts: Iterable[str],
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[str]:
|
||||
"""Run more texts through the embeddings and add to the vectorstore.
|
||||
|
||||
Args:
|
||||
texts (Iterable[str]): Texts to add to the vectorstore.
|
||||
metadatas (Optional[List[dict]], optional): Optional list of metadatas.
|
||||
ids (Optional[List[str]], optional): Optional list of IDs.
|
||||
|
||||
Returns:
|
||||
List[str]: List of IDs of the added texts.
|
||||
def _load_embedding_model(self, model_name: str):
|
||||
"""
|
||||
# TODO: Handle the case where the user doesn't provide ids on the Collection
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid1()) for _ in texts]
|
||||
embeddings = None
|
||||
texts = list(texts)
|
||||
if self._embedding_function is not None:
|
||||
embeddings = self._embedding_function.embed_documents(
|
||||
texts
|
||||
)
|
||||
if metadatas:
|
||||
# fill metadatas with empty dicts if somebody
|
||||
# did not specify metadata for all texts
|
||||
length_diff = len(texts) - len(metadatas)
|
||||
if length_diff:
|
||||
metadatas = metadatas + [{}] * length_diff
|
||||
empty_ids = []
|
||||
non_empty_ids = []
|
||||
for idx, m in enumerate(metadatas):
|
||||
if m:
|
||||
non_empty_ids.append(idx)
|
||||
else:
|
||||
empty_ids.append(idx)
|
||||
if non_empty_ids:
|
||||
metadatas = [metadatas[idx] for idx in non_empty_ids]
|
||||
texts_with_metadatas = [
|
||||
texts[idx] for idx in non_empty_ids
|
||||
]
|
||||
embeddings_with_metadatas = (
|
||||
[embeddings[idx] for idx in non_empty_ids]
|
||||
if embeddings
|
||||
else None
|
||||
)
|
||||
ids_with_metadata = [
|
||||
ids[idx] for idx in non_empty_ids
|
||||
]
|
||||
try:
|
||||
self._collection.upsert(
|
||||
metadatas=metadatas,
|
||||
embeddings=embeddings_with_metadatas,
|
||||
documents=texts_with_metadatas,
|
||||
ids=ids_with_metadata,
|
||||
)
|
||||
except ValueError as e:
|
||||
if "Expected metadata value to be" in str(e):
|
||||
msg = (
|
||||
"Try filtering complex metadata from the"
|
||||
" document"
|
||||
" using "
|
||||
"langchain.vectorstores.utils.filter_complex_metadata."
|
||||
)
|
||||
raise ValueError(e.args[0] + "\n\n" + msg)
|
||||
else:
|
||||
raise e
|
||||
if empty_ids:
|
||||
texts_without_metadatas = [
|
||||
texts[j] for j in empty_ids
|
||||
]
|
||||
embeddings_without_metadatas = (
|
||||
[embeddings[j] for j in empty_ids]
|
||||
if embeddings
|
||||
else None
|
||||
)
|
||||
ids_without_metadatas = [ids[j] for j in empty_ids]
|
||||
self._collection.upsert(
|
||||
embeddings=embeddings_without_metadatas,
|
||||
documents=texts_without_metadatas,
|
||||
ids=ids_without_metadatas,
|
||||
)
|
||||
else:
|
||||
self._collection.upsert(
|
||||
embeddings=embeddings,
|
||||
documents=texts,
|
||||
ids=ids,
|
||||
)
|
||||
return ids
|
||||
|
||||
def similarity_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Run similarity search with Chroma.
|
||||
Loads the sentence embedding model specified by the model name.
|
||||
|
||||
Args:
|
||||
query (str): Query text to search for.
|
||||
k (int): Number of results to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[Document]: List of documents most similar to the query text.
|
||||
model_name (str): The name of the model to load for generating embeddings.
|
||||
"""
|
||||
docs_and_scores = self.similarity_search_with_score(
|
||||
query, k, filter=filter
|
||||
)
|
||||
return [doc for doc, _ in docs_and_scores]
|
||||
try:
|
||||
self.model =embedding_functions.SentenceTransformerEmbeddingFunction(model_name=model_name)
|
||||
except Exception as e:
|
||||
print(f"Error loading embedding model: {e}")
|
||||
|
||||
def similarity_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
where_document: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs most similar to embedding vector.
|
||||
Args:
|
||||
embedding (List[float]): Embedding to look up documents similar to.
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
Returns:
|
||||
List of Documents most similar to the query vector.
|
||||
"""
|
||||
results = self.__query_collection(
|
||||
query_embeddings=embedding,
|
||||
n_results=k,
|
||||
where=filter,
|
||||
where_document=where_document,
|
||||
)
|
||||
return _results_to_docs(results)
|
||||
def _setup_collection(self):
|
||||
try:
|
||||
self.collection = self.client.get_collection(name=self.collection_name, embedding_function=self.model)
|
||||
except Exception as e:
|
||||
print(f"{e}. Creating new collection: {self.collection}")
|
||||
|
||||
def similarity_search_by_vector_with_relevance_scores(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
where_document: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""
|
||||
Return docs most similar to embedding vector and similarity score.
|
||||
self.collection = self.client.create_collection(name=self.collection_name, embedding_function=self.model)
|
||||
|
||||
Args:
|
||||
embedding (List[float]): Embedding to look up documents similar to.
|
||||
k (int): Number of Documents to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
|
||||
Returns:
|
||||
List[Tuple[Document, float]]: List of documents most similar to
|
||||
the query text and cosine distance in float for each.
|
||||
Lower score represents more similarity.
|
||||
def add_vectors(self, docs: List[str]):
|
||||
"""
|
||||
results = self.__query_collection(
|
||||
query_embeddings=embedding,
|
||||
n_results=k,
|
||||
where=filter,
|
||||
where_document=where_document,
|
||||
)
|
||||
return _results_to_docs_and_scores(results)
|
||||
|
||||
def similarity_search_with_score(
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
where_document: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Tuple[Document, float]]:
|
||||
"""Run similarity search with Chroma with distance.
|
||||
Adds vector representations of documents to the Qdrant collection.
|
||||
|
||||
Args:
|
||||
query (str): Query text to search for.
|
||||
k (int): Number of results to return. Defaults to 4.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
docs (List[dict]): A list of documents where each document is a dictionary with at least a 'page_content' key.
|
||||
|
||||
Returns:
|
||||
List[Tuple[Document, float]]: List of documents most similar to
|
||||
the query text and cosine distance in float for each.
|
||||
Lower score represents more similarity.
|
||||
"""
|
||||
if self._embedding_function is None:
|
||||
results = self.__query_collection(
|
||||
query_texts=[query],
|
||||
n_results=k,
|
||||
where=filter,
|
||||
where_document=where_document,
|
||||
)
|
||||
else:
|
||||
query_embedding = self._embedding_function.embed_query(
|
||||
query
|
||||
)
|
||||
results = self.__query_collection(
|
||||
query_embeddings=[query_embedding],
|
||||
n_results=k,
|
||||
where=filter,
|
||||
where_document=where_document,
|
||||
)
|
||||
|
||||
return _results_to_docs_and_scores(results)
|
||||
|
||||
def _select_relevance_score_fn(self) -> Callable[[float], float]:
|
||||
"""
|
||||
The 'correct' relevance function
|
||||
may differ depending on a few things, including:
|
||||
- the distance / similarity metric used by the VectorStore
|
||||
- the scale of your embeddings (OpenAI's are unit normed. Many others are not!)
|
||||
- embedding dimensionality
|
||||
- etc.
|
||||
OperationResponse or None: Returns the operation information if successful, otherwise None.
|
||||
"""
|
||||
if self.override_relevance_score_fn:
|
||||
return self.override_relevance_score_fn
|
||||
|
||||
distance = "l2"
|
||||
distance_key = "hnsw:space"
|
||||
metadata = self._collection.metadata
|
||||
|
||||
if metadata and distance_key in metadata:
|
||||
distance = metadata[distance_key]
|
||||
points = []
|
||||
ids = []
|
||||
for i, doc in enumerate(docs):
|
||||
try:
|
||||
points.append(doc)
|
||||
ids.append("id"+str(i))
|
||||
except Exception as e:
|
||||
print(f"Error processing document at index {i}: {e}")
|
||||
|
||||
if distance == "cosine":
|
||||
return self._cosine_relevance_score_fn
|
||||
elif distance == "l2":
|
||||
return self._euclidean_relevance_score_fn
|
||||
elif distance == "ip":
|
||||
return self._max_inner_product_relevance_score_fn
|
||||
else:
|
||||
raise ValueError(
|
||||
"No supported normalization function for distance"
|
||||
f" metric of type: {distance}.Consider providing"
|
||||
" relevance_score_fn to Chroma constructor."
|
||||
try:
|
||||
self.collection.add(
|
||||
documents=points,
|
||||
ids=ids
|
||||
)
|
||||
except Exception as e:
|
||||
print(f"Error adding vectors: {e}")
|
||||
return None
|
||||
|
||||
def max_marginal_relevance_search_by_vector(
|
||||
self,
|
||||
embedding: List[float],
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
where_document: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||
among selected documents.
|
||||
|
||||
Args:
|
||||
embedding: Embedding to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
lambda_mult: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
def search_vectors(self, query: str, limit: int = 2):
|
||||
"""
|
||||
|
||||
results = self.__query_collection(
|
||||
query_embeddings=embedding,
|
||||
n_results=fetch_k,
|
||||
where=filter,
|
||||
where_document=where_document,
|
||||
include=[
|
||||
"metadatas",
|
||||
"documents",
|
||||
"distances",
|
||||
"embeddings",
|
||||
],
|
||||
)
|
||||
mmr_selected = maximal_marginal_relevance(
|
||||
np.array(embedding, dtype=np.float32),
|
||||
results["embeddings"][0],
|
||||
k=k,
|
||||
lambda_mult=lambda_mult,
|
||||
)
|
||||
|
||||
candidates = _results_to_docs(results)
|
||||
|
||||
selected_results = [
|
||||
r for i, r in enumerate(candidates) if i in mmr_selected
|
||||
]
|
||||
return selected_results
|
||||
|
||||
def max_marginal_relevance_search(
|
||||
self,
|
||||
query: str,
|
||||
k: int = DEFAULT_K,
|
||||
fetch_k: int = 20,
|
||||
lambda_mult: float = 0.5,
|
||||
filter: Optional[Dict[str, str]] = None,
|
||||
where_document: Optional[Dict[str, str]] = None,
|
||||
**kwargs: Any,
|
||||
) -> List[Document]:
|
||||
"""Return docs selected using the maximal marginal relevance.
|
||||
Maximal marginal relevance optimizes for similarity to query AND diversity
|
||||
among selected documents.
|
||||
Searches the collection for vectors similar to the query vector.
|
||||
|
||||
Args:
|
||||
query: Text to look up documents similar to.
|
||||
k: Number of Documents to return. Defaults to 4.
|
||||
fetch_k: Number of Documents to fetch to pass to MMR algorithm.
|
||||
lambda_mult: Number between 0 and 1 that determines the degree
|
||||
of diversity among the results with 0 corresponding
|
||||
to maximum diversity and 1 to minimum diversity.
|
||||
Defaults to 0.5.
|
||||
filter (Optional[Dict[str, str]]): Filter by metadata. Defaults to None.
|
||||
query (str): The query string to be converted into a vector and used for searching.
|
||||
limit (int): The number of search results to return. Defaults to 3.
|
||||
|
||||
Returns:
|
||||
List of Documents selected by maximal marginal relevance.
|
||||
"""
|
||||
if self._embedding_function is None:
|
||||
raise ValueError(
|
||||
"For MMR search, you must specify an embedding"
|
||||
" function oncreation."
|
||||
)
|
||||
|
||||
embedding = self._embedding_function.embed_query(query)
|
||||
docs = self.max_marginal_relevance_search_by_vector(
|
||||
embedding,
|
||||
k,
|
||||
fetch_k,
|
||||
lambda_mult=lambda_mult,
|
||||
filter=filter,
|
||||
where_document=where_document,
|
||||
)
|
||||
return docs
|
||||
|
||||
def delete_collection(self) -> None:
|
||||
"""Delete the collection."""
|
||||
self._client.delete_collection(self._collection.name)
|
||||
|
||||
def get(
|
||||
self,
|
||||
ids: Optional[OneOrMany[ID]] = None,
|
||||
where: Optional[Where] = None,
|
||||
limit: Optional[int] = None,
|
||||
offset: Optional[int] = None,
|
||||
where_document: Optional[WhereDocument] = None,
|
||||
include: Optional[List[str]] = None,
|
||||
) -> Dict[str, Any]:
|
||||
"""Gets the collection.
|
||||
|
||||
Args:
|
||||
ids: The ids of the embeddings to get. Optional.
|
||||
where: A Where type dict used to filter results by.
|
||||
E.g. `{"color" : "red", "price": 4.20}`. Optional.
|
||||
limit: The number of documents to return. Optional.
|
||||
offset: The offset to start returning results from.
|
||||
Useful for paging results with limit. Optional.
|
||||
where_document: A WhereDocument type dict used to filter by the documents.
|
||||
E.g. `{$contains: "hello"}`. Optional.
|
||||
include: A list of what to include in the results.
|
||||
Can contain `"embeddings"`, `"metadatas"`, `"documents"`.
|
||||
Ids are always included.
|
||||
Defaults to `["metadatas", "documents"]`. Optional.
|
||||
"""
|
||||
kwargs = {
|
||||
"ids": ids,
|
||||
"where": where,
|
||||
"limit": limit,
|
||||
"offset": offset,
|
||||
"where_document": where_document,
|
||||
}
|
||||
|
||||
if include is not None:
|
||||
kwargs["include"] = include
|
||||
|
||||
return self._collection.get(**kwargs)
|
||||
|
||||
def persist(self) -> None:
|
||||
"""Persist the collection.
|
||||
|
||||
This can be used to explicitly persist the data to disk.
|
||||
It will also be called automatically when the object is destroyed.
|
||||
SearchResult or None: Returns the search results if successful, otherwise None.
|
||||
"""
|
||||
if self._persist_directory is None:
|
||||
raise ValueError(
|
||||
"You must specify a persist_directory on"
|
||||
"creation to persist the collection."
|
||||
)
|
||||
import chromadb
|
||||
|
||||
# Maintain backwards compatibility with chromadb < 0.4.0
|
||||
major, minor, _ = chromadb.__version__.split(".")
|
||||
if int(major) == 0 and int(minor) < 4:
|
||||
self._client.persist()
|
||||
|
||||
def update_document(
|
||||
self, document_id: str, document: Document
|
||||
) -> None:
|
||||
"""Update a document in the collection.
|
||||
|
||||
Args:
|
||||
document_id (str): ID of the document to update.
|
||||
document (Document): Document to update.
|
||||
"""
|
||||
return self.update_documents([document_id], [document])
|
||||
|
||||
def update_documents(
|
||||
self, ids: List[str], documents: List[Document]
|
||||
) -> None:
|
||||
"""Update a document in the collection.
|
||||
|
||||
Args:
|
||||
ids (List[str]): List of ids of the document to update.
|
||||
documents (List[Document]): List of documents to update.
|
||||
"""
|
||||
text = [document.page_content for document in documents]
|
||||
metadata = [document.metadata for document in documents]
|
||||
if self._embedding_function is None:
|
||||
raise ValueError(
|
||||
"For update, you must specify an embedding function"
|
||||
" on creation."
|
||||
)
|
||||
embeddings = self._embedding_function.embed_documents(text)
|
||||
|
||||
if hasattr(
|
||||
self._collection._client, "max_batch_size"
|
||||
): # for Chroma 0.4.10 and above
|
||||
from chromadb.utils.batch_utils import create_batches
|
||||
|
||||
for batch in create_batches(
|
||||
api=self._collection._client,
|
||||
ids=ids,
|
||||
metadatas=metadata,
|
||||
documents=text,
|
||||
embeddings=embeddings,
|
||||
):
|
||||
self._collection.update(
|
||||
ids=batch[0],
|
||||
embeddings=batch[1],
|
||||
documents=batch[3],
|
||||
metadatas=batch[2],
|
||||
)
|
||||
else:
|
||||
self._collection.update(
|
||||
ids=ids,
|
||||
embeddings=embeddings,
|
||||
documents=text,
|
||||
metadatas=metadata,
|
||||
try:
|
||||
search_result = self.collection.query(
|
||||
query_texts=query,
|
||||
n_results=limit,
|
||||
)
|
||||
return search_result
|
||||
except Exception as e:
|
||||
print(f"Error searching vectors: {e}")
|
||||
return None
|
||||
|
||||
@classmethod
|
||||
def from_texts(
|
||||
cls: Type[Chroma],
|
||||
texts: List[str],
|
||||
embedding: Optional[Embeddings] = None,
|
||||
metadatas: Optional[List[dict]] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
||||
persist_directory: Optional[str] = None,
|
||||
client_settings: Optional[chromadb.config.Settings] = None,
|
||||
client: Optional[chromadb.Client] = None,
|
||||
collection_metadata: Optional[Dict] = None,
|
||||
**kwargs: Any,
|
||||
) -> Chroma:
|
||||
"""Create a Chroma vectorstore from a raw documents.
|
||||
|
||||
If a persist_directory is specified, the collection will be persisted there.
|
||||
Otherwise, the data will be ephemeral in-memory.
|
||||
|
||||
Args:
|
||||
texts (List[str]): List of texts to add to the collection.
|
||||
collection_name (str): Name of the collection to create.
|
||||
persist_directory (Optional[str]): Directory to persist the collection.
|
||||
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
|
||||
metadatas (Optional[List[dict]]): List of metadatas. Defaults to None.
|
||||
ids (Optional[List[str]]): List of document IDs. Defaults to None.
|
||||
client_settings (Optional[chromadb.config.Settings]): Chroma client settings
|
||||
collection_metadata (Optional[Dict]): Collection configurations.
|
||||
Defaults to None.
|
||||
|
||||
Returns:
|
||||
Chroma: Chroma vectorstore.
|
||||
def search_vectors_formatted(self, query: str, limit: int = 2):
|
||||
"""
|
||||
chroma_collection = cls(
|
||||
collection_name=collection_name,
|
||||
embedding_function=embedding,
|
||||
persist_directory=persist_directory,
|
||||
client_settings=client_settings,
|
||||
client=client,
|
||||
collection_metadata=collection_metadata,
|
||||
**kwargs,
|
||||
)
|
||||
if ids is None:
|
||||
ids = [str(uuid.uuid1()) for _ in texts]
|
||||
if hasattr(
|
||||
chroma_collection._client, "max_batch_size"
|
||||
): # for Chroma 0.4.10 and above
|
||||
from chromadb.utils.batch_utils import create_batches
|
||||
|
||||
for batch in create_batches(
|
||||
api=chroma_collection._client,
|
||||
ids=ids,
|
||||
metadatas=metadatas,
|
||||
documents=texts,
|
||||
):
|
||||
chroma_collection.add_texts(
|
||||
texts=batch[3] if batch[3] else [],
|
||||
metadatas=batch[2] if batch[2] else None,
|
||||
ids=batch[0],
|
||||
)
|
||||
else:
|
||||
chroma_collection.add_texts(
|
||||
texts=texts, metadatas=metadatas, ids=ids
|
||||
)
|
||||
return chroma_collection
|
||||
|
||||
@classmethod
|
||||
def from_documents(
|
||||
cls: Type[Chroma],
|
||||
documents: List[Document],
|
||||
embedding: Optional[Embeddings] = None,
|
||||
ids: Optional[List[str]] = None,
|
||||
collection_name: str = _LANGCHAIN_DEFAULT_COLLECTION_NAME,
|
||||
persist_directory: Optional[str] = None,
|
||||
client_settings: Optional[chromadb.config.Settings] = None,
|
||||
client: Optional[chromadb.Client] = None, # Add this line
|
||||
collection_metadata: Optional[Dict] = None,
|
||||
**kwargs: Any,
|
||||
) -> Chroma:
|
||||
"""Create a Chroma vectorstore from a list of documents.
|
||||
|
||||
If a persist_directory is specified, the collection will be persisted there.
|
||||
Otherwise, the data will be ephemeral in-memory.
|
||||
Searches the collection for vectors similar to the query vector.
|
||||
|
||||
Args:
|
||||
collection_name (str): Name of the collection to create.
|
||||
persist_directory (Optional[str]): Directory to persist the collection.
|
||||
ids (Optional[List[str]]): List of document IDs. Defaults to None.
|
||||
documents (List[Document]): List of documents to add to the vectorstore.
|
||||
embedding (Optional[Embeddings]): Embedding function. Defaults to None.
|
||||
client_settings (Optional[chromadb.config.Settings]): Chroma client settings
|
||||
collection_metadata (Optional[Dict]): Collection configurations.
|
||||
Defaults to None.
|
||||
query (str): The query string to be converted into a vector and used for searching.
|
||||
limit (int): The number of search results to return. Defaults to 3.
|
||||
|
||||
Returns:
|
||||
Chroma: Chroma vectorstore.
|
||||
"""
|
||||
texts = [doc.page_content for doc in documents]
|
||||
metadatas = [doc.metadata for doc in documents]
|
||||
return cls.from_texts(
|
||||
texts=texts,
|
||||
embedding=embedding,
|
||||
metadatas=metadatas,
|
||||
ids=ids,
|
||||
collection_name=collection_name,
|
||||
persist_directory=persist_directory,
|
||||
client_settings=client_settings,
|
||||
client=client,
|
||||
collection_metadata=collection_metadata,
|
||||
**kwargs,
|
||||
)
|
||||
|
||||
def delete(
|
||||
self, ids: Optional[List[str]] = None, **kwargs: Any
|
||||
) -> None:
|
||||
"""Delete by vector IDs.
|
||||
|
||||
Args:
|
||||
ids: List of ids to delete.
|
||||
SearchResult or None: Returns the search results if successful, otherwise None.
|
||||
"""
|
||||
self._collection.delete(ids=ids)
|
||||
try:
|
||||
search_result = self.collection.query(
|
||||
query_texts=query,
|
||||
n_results=limit,
|
||||
)
|
||||
return search_result
|
||||
except Exception as e:
|
||||
print(f"Error searching vectors: {e}")
|
||||
return None
|
||||
|
Loading…
Reference in new issue