parent
9e63caa351
commit
44bf2061a6
@ -0,0 +1,310 @@
|
|||||||
|
"""
|
||||||
|
Single-File Hierarchical Structured Communication Framework Example
|
||||||
|
|
||||||
|
This example demonstrates how to use the consolidated single-file implementation
|
||||||
|
of the Talk Structurally, Act Hierarchically framework.
|
||||||
|
|
||||||
|
All components are now in one file: hierarchical_structured_communication_framework.py
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import sys
|
||||||
|
from typing import Dict, Any
|
||||||
|
|
||||||
|
# Add the project root to the Python path
|
||||||
|
project_root = os.path.abspath(os.path.join(os.path.dirname(__file__), '..', '..'))
|
||||||
|
sys.path.insert(0, project_root)
|
||||||
|
|
||||||
|
from dotenv import load_dotenv
|
||||||
|
|
||||||
|
# Import everything from the single file
|
||||||
|
from swarms.structs.hierarchical_structured_communication_framework import (
|
||||||
|
HierarchicalStructuredCommunicationFramework,
|
||||||
|
HierarchicalStructuredCommunicationGenerator,
|
||||||
|
HierarchicalStructuredCommunicationEvaluator,
|
||||||
|
HierarchicalStructuredCommunicationRefiner,
|
||||||
|
HierarchicalStructuredCommunicationSupervisor,
|
||||||
|
# Convenience aliases
|
||||||
|
TalkHierarchicalGenerator,
|
||||||
|
TalkHierarchicalEvaluator,
|
||||||
|
TalkHierarchicalRefiner,
|
||||||
|
TalkHierarchicalSupervisor,
|
||||||
|
)
|
||||||
|
|
||||||
|
# Load environment variables
|
||||||
|
load_dotenv()
|
||||||
|
|
||||||
|
|
||||||
|
def example_basic_usage():
|
||||||
|
"""
|
||||||
|
Basic usage example with default agents
|
||||||
|
"""
|
||||||
|
print("=" * 80)
|
||||||
|
print("BASIC USAGE EXAMPLE")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
# Create framework with default configuration
|
||||||
|
framework = HierarchicalStructuredCommunicationFramework(
|
||||||
|
name="BasicFramework",
|
||||||
|
max_loops=2,
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run a simple task
|
||||||
|
task = "Explain the benefits of structured communication in multi-agent systems"
|
||||||
|
|
||||||
|
print(f"Task: {task}")
|
||||||
|
print("Running framework...")
|
||||||
|
|
||||||
|
result = framework.run(task)
|
||||||
|
|
||||||
|
print("\n" + "=" * 50)
|
||||||
|
print("FINAL RESULT")
|
||||||
|
print("=" * 50)
|
||||||
|
print(result["final_result"])
|
||||||
|
|
||||||
|
print(f"\nTotal loops: {result['total_loops']}")
|
||||||
|
print(f"Conversation history entries: {len(result['conversation_history'])}")
|
||||||
|
print(f"Evaluation results: {len(result['evaluation_results'])}")
|
||||||
|
|
||||||
|
|
||||||
|
def example_custom_agents():
|
||||||
|
"""
|
||||||
|
Example using custom specialized agents
|
||||||
|
"""
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("CUSTOM AGENTS EXAMPLE")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
# Create custom agents using the convenience aliases
|
||||||
|
generator = TalkHierarchicalGenerator(
|
||||||
|
agent_name="ContentCreator",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
evaluator1 = TalkHierarchicalEvaluator(
|
||||||
|
agent_name="AccuracyChecker",
|
||||||
|
evaluation_criteria=["accuracy", "technical_correctness"],
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
evaluator2 = TalkHierarchicalEvaluator(
|
||||||
|
agent_name="ClarityChecker",
|
||||||
|
evaluation_criteria=["clarity", "readability", "coherence"],
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
refiner = TalkHierarchicalRefiner(
|
||||||
|
agent_name="ContentImprover",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
supervisor = TalkHierarchicalSupervisor(
|
||||||
|
agent_name="WorkflowManager",
|
||||||
|
model_name="gpt-4o-mini",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Create framework with custom agents
|
||||||
|
framework = HierarchicalStructuredCommunicationFramework(
|
||||||
|
name="CustomFramework",
|
||||||
|
supervisor=supervisor,
|
||||||
|
generators=[generator],
|
||||||
|
evaluators=[evaluator1, evaluator2],
|
||||||
|
refiners=[refiner],
|
||||||
|
max_loops=3,
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run a complex task
|
||||||
|
task = "Design a comprehensive machine learning pipeline for sentiment analysis"
|
||||||
|
|
||||||
|
print(f"Task: {task}")
|
||||||
|
print("Running framework with custom agents...")
|
||||||
|
|
||||||
|
result = framework.run(task)
|
||||||
|
|
||||||
|
print("\n" + "=" * 50)
|
||||||
|
print("FINAL RESULT")
|
||||||
|
print("=" * 50)
|
||||||
|
print(result["final_result"])
|
||||||
|
|
||||||
|
print(f"\nTotal loops: {result['total_loops']}")
|
||||||
|
print(f"Conversation history entries: {len(result['conversation_history'])}")
|
||||||
|
print(f"Evaluation results: {len(result['evaluation_results'])}")
|
||||||
|
|
||||||
|
|
||||||
|
def example_ollama_integration():
|
||||||
|
"""
|
||||||
|
Example using Ollama for local inference
|
||||||
|
"""
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("OLLAMA INTEGRATION EXAMPLE")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
# Create framework with Ollama configuration
|
||||||
|
framework = HierarchicalStructuredCommunicationFramework(
|
||||||
|
name="OllamaFramework",
|
||||||
|
max_loops=2,
|
||||||
|
verbose=True,
|
||||||
|
model_name="llama3:latest",
|
||||||
|
use_ollama=True,
|
||||||
|
ollama_base_url="http://localhost:11434/v1",
|
||||||
|
ollama_api_key="ollama"
|
||||||
|
)
|
||||||
|
|
||||||
|
# Run a task with local model
|
||||||
|
task = "Explain the concept of structured communication protocols"
|
||||||
|
|
||||||
|
print(f"Task: {task}")
|
||||||
|
print("Running framework with Ollama...")
|
||||||
|
|
||||||
|
try:
|
||||||
|
result = framework.run(task)
|
||||||
|
|
||||||
|
print("\n" + "=" * 50)
|
||||||
|
print("FINAL RESULT")
|
||||||
|
print("=" * 50)
|
||||||
|
print(result["final_result"])
|
||||||
|
|
||||||
|
print(f"\nTotal loops: {result['total_loops']}")
|
||||||
|
print(f"Conversation history entries: {len(result['conversation_history'])}")
|
||||||
|
print(f"Evaluation results: {len(result['evaluation_results'])}")
|
||||||
|
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error with Ollama: {e}")
|
||||||
|
print("Make sure Ollama is running: ollama serve")
|
||||||
|
|
||||||
|
|
||||||
|
def example_structured_communication():
|
||||||
|
"""
|
||||||
|
Example demonstrating structured communication protocol
|
||||||
|
"""
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("STRUCTURED COMMUNICATION EXAMPLE")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
# Create framework
|
||||||
|
framework = HierarchicalStructuredCommunicationFramework(
|
||||||
|
name="CommunicationDemo",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Demonstrate structured message sending
|
||||||
|
print("Sending structured message...")
|
||||||
|
|
||||||
|
structured_msg = framework.send_structured_message(
|
||||||
|
sender="Supervisor",
|
||||||
|
recipient="Generator",
|
||||||
|
message="Create a technical documentation outline",
|
||||||
|
background="For a Python library focused on data processing",
|
||||||
|
intermediate_output="Previous research on similar libraries"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Message sent: {structured_msg.message}")
|
||||||
|
print(f"Background: {structured_msg.background}")
|
||||||
|
print(f"Intermediate output: {structured_msg.intermediate_output}")
|
||||||
|
print(f"From: {structured_msg.sender} -> To: {structured_msg.recipient}")
|
||||||
|
|
||||||
|
|
||||||
|
def example_agent_interaction():
|
||||||
|
"""
|
||||||
|
Example showing direct agent interaction
|
||||||
|
"""
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("AGENT INTERACTION EXAMPLE")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
# Create agents
|
||||||
|
generator = TalkHierarchicalGenerator(
|
||||||
|
agent_name="ContentGenerator",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
evaluator = TalkHierarchicalEvaluator(
|
||||||
|
agent_name="QualityEvaluator",
|
||||||
|
evaluation_criteria=["accuracy", "clarity"],
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
refiner = TalkHierarchicalRefiner(
|
||||||
|
agent_name="ContentRefiner",
|
||||||
|
verbose=True
|
||||||
|
)
|
||||||
|
|
||||||
|
# Generate content
|
||||||
|
print("1. Generating content...")
|
||||||
|
gen_result = generator.generate_with_structure(
|
||||||
|
message="Create a brief explanation of machine learning",
|
||||||
|
background="For beginners with no technical background",
|
||||||
|
intermediate_output=""
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Generated content: {gen_result.content[:200]}...")
|
||||||
|
|
||||||
|
# Evaluate content
|
||||||
|
print("\n2. Evaluating content...")
|
||||||
|
eval_result = evaluator.evaluate_with_criterion(
|
||||||
|
content=gen_result.content,
|
||||||
|
criterion="clarity"
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Evaluation score: {eval_result.score}/10")
|
||||||
|
print(f"Feedback: {eval_result.feedback[:200]}...")
|
||||||
|
|
||||||
|
# Refine content
|
||||||
|
print("\n3. Refining content...")
|
||||||
|
refine_result = refiner.refine_with_feedback(
|
||||||
|
original_content=gen_result.content,
|
||||||
|
evaluation_results=[eval_result]
|
||||||
|
)
|
||||||
|
|
||||||
|
print(f"Refined content: {refine_result.refined_content[:200]}...")
|
||||||
|
print(f"Changes made: {refine_result.changes_made}")
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
"""
|
||||||
|
Main function to run all examples
|
||||||
|
"""
|
||||||
|
print("SINGLE-FILE HIERARCHICAL STRUCTURED COMMUNICATION FRAMEWORK")
|
||||||
|
print("=" * 80)
|
||||||
|
print("This demonstrates the consolidated single-file implementation")
|
||||||
|
print("based on the research paper: arXiv:2502.11098")
|
||||||
|
print("=" * 80)
|
||||||
|
|
||||||
|
try:
|
||||||
|
# Run examples
|
||||||
|
example_basic_usage()
|
||||||
|
example_custom_agents()
|
||||||
|
example_ollama_integration()
|
||||||
|
example_structured_communication()
|
||||||
|
example_agent_interaction()
|
||||||
|
|
||||||
|
print("\n" + "=" * 80)
|
||||||
|
print("ALL EXAMPLES COMPLETED SUCCESSFULLY!")
|
||||||
|
print("=" * 80)
|
||||||
|
print("Framework Features Demonstrated:")
|
||||||
|
print("✓ Single-file implementation")
|
||||||
|
print("✓ Structured Communication Protocol (M_ij, B_ij, I_ij)")
|
||||||
|
print("✓ Hierarchical Evaluation System")
|
||||||
|
print("✓ Iterative Refinement Process")
|
||||||
|
print("✓ Flexible Model Configuration (OpenAI/Ollama)")
|
||||||
|
print("✓ Custom Agent Specialization")
|
||||||
|
print("✓ Direct Agent Interaction")
|
||||||
|
print("✓ Convenience Aliases")
|
||||||
|
|
||||||
|
except KeyboardInterrupt:
|
||||||
|
print("\nInterrupted by user")
|
||||||
|
except Exception as e:
|
||||||
|
print(f"Error during execution: {e}")
|
||||||
|
import traceback
|
||||||
|
traceback.print_exc()
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
main()
|
Loading…
Reference in new issue