pull/128/head
Kye 1 year ago
parent 991979dfc6
commit 4596ddc5ff

@ -1,31 +1,42 @@
# ==================================
# Use an official Python runtime as a parent image # Use an official Python runtime as a parent image
FROM python:3.9-slim FROM python:3.9-slim
# Set environment variables to make Python output unbuffered and disable the PIP cache # Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1 ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1 ENV PYTHONUNBUFFERED 1
ENV PIP_NO_CACHE_DIR off
ENV PIP_DISABLE_PIP_VERSION_CHECK on
ENV PIP_DEFAULT_TIMEOUT 100
# Set the working directory in the container # Set the working directory in the container
WORKDIR /usr/src/app WORKDIR /usr/src/swarm_cloud
# Install Python dependencies
# COPY requirements.txt and pyproject.toml if you're using poetry for dependency management
COPY requirements.txt .
RUN pip install --upgrade pip
RUN pip install --no-cache-dir -r requirements.txt
# Copy the current directory contents into the container at /usr/src/app # Install the 'swarms' package, assuming it's available on PyPI
RUN pip install swarms
# Copy the rest of the application
COPY . . COPY . .
# Install Poetry # Add entrypoint script if needed
RUN pip install poetry # COPY ./entrypoint.sh .
# RUN chmod +x /usr/src/swarm_cloud/entrypoint.sh
# Disable virtualenv creation by poetry and install dependencies # Expose port if your application has a web interface
RUN poetry config virtualenvs.create false # EXPOSE 5000
RUN poetry install --no-interaction --no-ansi
# Install the 'swarms' package if it's not included in the poetry.lock # # Define environment variable for the swarm to work
RUN pip install swarms # ENV SWARM_API_KEY=your_swarm_api_key_here
# Assuming tests require pytest to run # # Add Docker CMD or ENTRYPOINT script to run the application
RUN pip install pytest # CMD python your_swarm_startup_script.py
# Or use the entrypoint script if you have one
# ENTRYPOINT ["/usr/src/swarm_cloud/entrypoint.sh"]
# Run pytest on all tests in the tests directory # If you're using `CMD` to execute a Python script, make sure it's executable
CMD find ./tests -name '*.py' -exec pytest {} + # RUN chmod +x your_swarm_startup_script.py

@ -0,0 +1,197 @@
# Docker Setup Guide for Contributors to Swarms
## Introduction
Welcome to the `swarms` project Docker setup guide. This document will help you establish a Docker-based environment for contributing to `swarms`. Docker provides a consistent and isolated environment, ensuring that all contributors can work in the same settings, reducing the "it works on my machine" syndrome.
### Purpose
The purpose of this guide is to:
- Ensure contributors can quickly set up their development environment.
- Provide a consistent testing and deployment workflow.
- Introduce Docker basics and best practices.
### Scope
This guide covers:
- Installing Docker
- Cloning the `swarms` repository
- Building a Docker image
- Running the `swarms` application in a Docker container
- Running tests using Docker
- Pushing changes and working with Docker Hub
### Audience
This guide is intended for developers and contributors to the `swarms` project who have basic knowledge of version control with Git and programming in Python.
## Prerequisites
Before you begin, ensure you have:
- A GitHub account
- Git installed on your machine
- Basic command-line proficiency
## Docker Installation
### Windows
1. Download Docker Desktop for Windows from the official website.
2. Install Docker Desktop, ensuring that the "Use Windows containers instead of Linux containers" option is unchecked.
3. Start Docker Desktop and wait for the Docker engine to start.
### macOS
1. Download Docker Desktop for macOS from the official website.
2. Follow the installation instructions, drag-and-drop Docker into the Applications folder.
3. Start Docker Desktop from the Applications folder.
### Linux (Ubuntu)
1. Update your package index: `sudo apt-get update`.
2. Install packages to allow apt to use a repository over HTTPS.
3. Add Dockers official GPG key.
4. Set up the stable repository.
5. Install the latest version of Docker Engine and containerd.
```bash
sudo apt-get install docker-ce docker-ce-cli containerd.io
```
6. Verify that Docker Engine is installed correctly by running the hello-world image.
```bash
sudo docker run hello-world
```
### Post-installation Steps for Linux
- Manage Docker as a non-root user.
- Configure Docker to start on boot.
## Cloning the Repository
```bash
git clone https://github.com/your-username/swarms.git
cd swarms
```
## Docker Basics
### Dockerfile Overview
- Explain the structure and commands of a Dockerfile used in the `swarms` project.
### Building the Image
```bash
docker build -t swarms-dev .
```
### Running a Container
```bash
docker run -it --rm swarms-dev
```
## Development Workflow with Docker
### Running the Application
- Commands to run the `swarms` application within Docker.
### Making Changes
- How to make changes to the code and reflect those changes within the Docker container.
### Running Tests
- Instructions on running tests using `pytest` within the Docker environment.
## Docker Compose for Local Development
- Introduce Docker Compose and its role in simplifying multi-container setups.
- Create a `docker-compose.yml` file for the `swarms` project.
## Dockerfile
Creating a Dockerfile for deploying the `swarms` framework to the cloud involves setting up the necessary environment to run your Python application, ensuring all dependencies are installed, and configuring the container to execute the desired tasks. Here's an example Dockerfile that sets up such an environment:
```Dockerfile
# Use an official Python runtime as a parent image
FROM python:3.9-slim
# Set environment variables
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
# Set the working directory in the container
WORKDIR /usr/src/swarm_cloud
# Install system dependencies
RUN apt-get update \
&& apt-get -y install netcat gcc \
&& apt-get clean
# Install Python dependencies
# COPY requirements.txt and pyproject.toml if you're using poetry for dependency management
COPY requirements.txt .
RUN pip install --upgrade pip
RUN pip install --no-cache-dir -r requirements.txt
# Install the 'swarms' package, assuming it's available on PyPI
RUN pip install swarms
# Copy the rest of the application
COPY . .
# Add entrypoint script if needed
# COPY ./entrypoint.sh .
# RUN chmod +x /usr/src/swarm_cloud/entrypoint.sh
# Expose port if your application has a web interface
# EXPOSE 5000
# Define environment variable for the swarm to work
ENV SWARM_API_KEY=your_swarm_api_key_here
# Add Docker CMD or ENTRYPOINT script to run the application
# CMD python your_swarm_startup_script.py
# Or use the entrypoint script if you have one
# ENTRYPOINT ["/usr/src/swarm_cloud/entrypoint.sh"]
# If you're using `CMD` to execute a Python script, make sure it's executable
# RUN chmod +x your_swarm_startup_script.py
```
To build and run this Docker image:
1. Replace `requirements.txt` with your actual requirements file or `pyproject.toml` and `poetry.lock` if you're using Poetry.
2. Replace `your_swarm_startup_script.py` with the script that starts your application.
3. If your application requires an API key or other sensitive data, make sure to set these securely, perhaps using environment variables or secrets management solutions provided by your cloud provider.
4. If you have an entrypoint script, uncomment the `COPY` and `RUN` lines for `entrypoint.sh`.
5. If your application has a web interface, uncomment the `EXPOSE` line and set it to the correct port.
Now, build your Docker image:
```sh
docker build -t swarm-cloud .
```
And run it:
```sh
docker run -d --name my-swarm-app swarm-cloud
```
For deploying to the cloud, you'll need to push your Docker image to a container registry (like Docker Hub or a private registry), then pull it from your cloud environment to run it. Cloud providers often have services specifically for this purpose (like AWS ECS, GCP GKE, or Azure AKS). The deployment process will involve:
- Pushing the image to a registry.
- Configuring cloud services to run your image.
- Setting up networking, storage, and other cloud resources.
- Monitoring, logging, and potentially scaling your containers.
Remember to secure sensitive data, use tagged releases for your images, and follow best practices for operating in the cloud.

@ -61,6 +61,7 @@ nav:
- Home: - Home:
- Overview: "index.md" - Overview: "index.md"
- Contributing: "contributing.md" - Contributing: "contributing.md"
- Docker Container Setup: "docker_setup.md"
- Swarms: - Swarms:
- Overview: "swarms/index.md" - Overview: "swarms/index.md"
- swarms.swarms: - swarms.swarms:

@ -46,7 +46,6 @@ tiktoken = "*"
attrs = "*" attrs = "*"
ggl = "*" ggl = "*"
ratelimit = "*" ratelimit = "*"
beautifulsoup4 = "*" beautifulsoup4 = "*"
huggingface-hub = "*" huggingface-hub = "*"
pydantic = "*" pydantic = "*"

@ -31,7 +31,6 @@ agent-protocol
accelerate accelerate
chromadb chromadb
tiktoken tiktoken
open-interpreter
tabulate tabulate
colored colored
griptape griptape

@ -1,7 +1,6 @@
import re import re
from concurrent.futures import ThreadPoolExecutor, as_completed from concurrent.futures import ThreadPoolExecutor, as_completed
from swarms.models import OpenAIChat from swarms.models.auto_temp import OpenAIChat
class AutoTempAgent: class AutoTempAgent:
""" """
@ -32,7 +31,6 @@ class AutoTempAgent:
Generate a 10,000 word blog on mental clarity and the benefits of meditation. Generate a 10,000 word blog on mental clarity and the benefits of meditation.
""" """
def __init__( def __init__(
self, self,
temperature: float = 0.5, temperature: float = 0.5,

@ -0,0 +1,33 @@
# TESTING
# -==================
# Use an official Python runtime as a parent image
FROM python:3.9-slim
# Set environment variables to make Python output unbuffered and disable the PIP cache
ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1
ENV PIP_NO_CACHE_DIR off
ENV PIP_DISABLE_PIP_VERSION_CHECK on
ENV PIP_DEFAULT_TIMEOUT 100
# Set the working directory in the container
WORKDIR /usr/src/app
# Copy the current directory contents into the container at /usr/src/app
COPY . .
# Install Poetry
RUN pip install poetry
# Disable virtualenv creation by poetry and install dependencies
RUN poetry config virtualenvs.create false
RUN poetry install --no-interaction --no-ansi
# Install the 'swarms' package if it's not included in the poetry.lock
RUN pip install swarms
# Assuming tests require pytest to run
RUN pip install pytest
# Run pytest on all tests in the tests directory
CMD find ./tests -name '*.py' -exec pytest {} +

@ -0,0 +1,76 @@
import os
from concurrent.futures import ThreadPoolExecutor
from unittest.mock import Mock, patch
import pytest
from dotenv import load_dotenv
from swarms.models.autotemp import AutoTempAgent
api_key = os.getenv("OPENAI_API_KEY")
load_dotenv()
@pytest.fixture
def auto_temp_agent():
return AutoTempAgent(api_key=api_key)
def test_initialization(auto_temp_agent):
assert isinstance(auto_temp_agent, AutoTempAgent)
assert auto_temp_agent.auto_select is True
assert auto_temp_agent.max_workers == 6
assert auto_temp_agent.temperature == 0.5
assert auto_temp_agent.alt_temps == [0.4, 0.6, 0.8, 1.0, 1.2, 1.4]
def test_evaluate_output(auto_temp_agent):
output = "This is a test output."
with patch("swarms.models.OpenAIChat") as MockOpenAIChat:
mock_instance = MockOpenAIChat.return_value
mock_instance.return_value = "Score: 95.5"
score = auto_temp_agent.evaluate_output(output)
assert score == 95.5
mock_instance.assert_called_once()
def test_run_auto_select(auto_temp_agent):
task = "Generate a blog post."
temperature_string = "0.4,0.6,0.8,1.0,1.2,1.4"
result = auto_temp_agent.run(task, temperature_string)
assert "Best AutoTemp Output" in result
assert "Temp" in result
assert "Score" in result
def test_run_no_scores(auto_temp_agent):
task = "Invalid task."
temperature_string = "0.4,0.6,0.8,1.0,1.2,1.4"
with ThreadPoolExecutor(max_workers=auto_temp_agent.max_workers) as executor:
with patch.object(executor, "submit", side_effect=[None, None, None, None, None, None]):
result = auto_temp_agent.run(task, temperature_string)
assert result == "No valid outputs generated."
def test_run_manual_select(auto_temp_agent):
auto_temp_agent.auto_select = False
task = "Generate a blog post."
temperature_string = "0.4,0.6,0.8,1.0,1.2,1.4"
result = auto_temp_agent.run(task, temperature_string)
assert "Best AutoTemp Output" not in result
assert "Temp" in result
assert "Score" in result
def test_failed_initialization():
with pytest.raises(Exception):
AutoTempAgent()
def test_failed_evaluate_output(auto_temp_agent):
output = "This is a test output."
with patch("swarms.models.OpenAIChat") as MockOpenAIChat:
mock_instance = MockOpenAIChat.return_value
mock_instance.return_value = "Invalid score text"
score = auto_temp_agent.evaluate_output(output)
assert score == 0.0

@ -0,0 +1,154 @@
import os
import tempfile
from functools import wraps
from unittest.mock import patch
import numpy as np
import pytest
import torch
from swarms.models.distill_whisperx import DistilWhisperModel, async_retry
@pytest.fixture
def distil_whisper_model():
return DistilWhisperModel()
def create_audio_file(data: np.ndarray, sample_rate: int, file_path: str):
data.tofile(file_path)
return file_path
def test_initialization(distil_whisper_model):
assert isinstance(distil_whisper_model, DistilWhisperModel)
assert isinstance(distil_whisper_model.model, torch.nn.Module)
assert isinstance(distil_whisper_model.processor, torch.nn.Module)
assert distil_whisper_model.device in ["cpu", "cuda:0"]
def test_transcribe_audio_file(distil_whisper_model):
test_data = np.random.rand(16000) # Simulated audio data (1 second)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
audio_file_path = create_audio_file(test_data, 16000, audio_file.name)
transcription = distil_whisper_model.transcribe(audio_file_path)
os.remove(audio_file_path)
assert isinstance(transcription, str)
assert transcription.strip() != ""
@pytest.mark.asyncio
async def test_async_transcribe_audio_file(distil_whisper_model):
test_data = np.random.rand(16000) # Simulated audio data (1 second)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
audio_file_path = create_audio_file(test_data, 16000, audio_file.name)
transcription = await distil_whisper_model.async_transcribe(audio_file_path)
os.remove(audio_file_path)
assert isinstance(transcription, str)
assert transcription.strip() != ""
def test_transcribe_audio_data(distil_whisper_model):
test_data = np.random.rand(16000) # Simulated audio data (1 second)
transcription = distil_whisper_model.transcribe(test_data.tobytes())
assert isinstance(transcription, str)
assert transcription.strip() != ""
@pytest.mark.asyncio
async def test_async_transcribe_audio_data(distil_whisper_model):
test_data = np.random.rand(16000) # Simulated audio data (1 second)
transcription = await distil_whisper_model.async_transcribe(test_data.tobytes())
assert isinstance(transcription, str)
assert transcription.strip() != ""
def test_real_time_transcribe(distil_whisper_model, capsys):
test_data = np.random.rand(16000 * 5) # Simulated audio data (5 seconds)
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
audio_file_path = create_audio_file(test_data, 16000, audio_file.name)
distil_whisper_model.real_time_transcribe(audio_file_path, chunk_duration=1)
os.remove(audio_file_path)
captured = capsys.readouterr()
assert "Starting real-time transcription..." in captured.out
assert "Chunk" in captured.out
def test_real_time_transcribe_audio_file_not_found(distil_whisper_model, capsys):
audio_file_path = "non_existent_audio.wav"
distil_whisper_model.real_time_transcribe(audio_file_path, chunk_duration=1)
captured = capsys.readouterr()
assert "The audio file was not found." in captured.out
@pytest.fixture
def mock_async_retry():
def _mock_async_retry(retries=3, exceptions=(Exception,), delay=1):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
return await func(*args, **kwargs)
return wrapper
return decorator
with patch("distil_whisper_model.async_retry", new=_mock_async_retry()):
yield
@pytest.mark.asyncio
async def test_async_retry_decorator_success():
async def mock_async_function():
return "Success"
decorated_function = async_retry()(mock_async_function)
result = await decorated_function()
assert result == "Success"
@pytest.mark.asyncio
async def test_async_retry_decorator_failure():
async def mock_async_function():
raise Exception("Error")
decorated_function = async_retry()(mock_async_function)
with pytest.raises(Exception, match="Error"):
await decorated_function()
@pytest.mark.asyncio
async def test_async_retry_decorator_multiple_attempts():
async def mock_async_function():
if mock_async_function.attempts == 0:
mock_async_function.attempts += 1
raise Exception("Error")
else:
return "Success"
mock_async_function.attempts = 0
decorated_function = async_retry(max_retries=2)(mock_async_function)
result = await decorated_function()
assert result == "Success"
def test_create_audio_file():
test_data = np.random.rand(16000) # Simulated audio data (1 second)
sample_rate = 16000
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as audio_file:
audio_file_path = create_audio_file(test_data, sample_rate, audio_file.name)
assert os.path.exists(audio_file_path)
os.remove(audio_file_path)
if __name__ == "__main__":
pytest.main()

@ -0,0 +1,82 @@
import pytest
import torch
from swarms.models.jina_embeds import JinaEmbeddings
@pytest.fixture
def model():
return JinaEmbeddings("bert-base-uncased", verbose=True)
def test_initialization(model):
assert isinstance(model, JinaEmbeddings)
assert model.device in ["cuda", "cpu"]
assert model.max_length == 500
assert model.verbose is True
def test_run_sync(model):
task = "Encode this text"
result = model.run(task)
assert isinstance(result, torch.Tensor)
assert result.shape == (model.max_length,)
def test_run_async(model):
task = "Encode this text"
result = model.run_async(task)
assert isinstance(result, torch.Tensor)
assert result.shape == (model.max_length,)
def test_save_model(tmp_path, model):
model_path = tmp_path / "model"
model.save_model(model_path)
assert (model_path / "config.json").is_file()
assert (model_path / "pytorch_model.bin").is_file()
assert (model_path / "vocab.txt").is_file()
def test_gpu_available(model):
gpu_status = model.gpu_available()
if torch.cuda.is_available():
assert gpu_status is True
else:
assert gpu_status is False
def test_memory_consumption(model):
memory_stats = model.memory_consumption()
if torch.cuda.is_available():
assert "allocated" in memory_stats
assert "reserved" in memory_stats
else:
assert "error" in memory_stats
def test_cosine_similarity(model):
task1 = "This is a sample text for testing."
task2 = "Another sample text for testing."
embeddings1 = model.run(task1)
embeddings2 = model.run(task2)
sim = model.cos_sim(embeddings1, embeddings2)
assert isinstance(sim, torch.Tensor)
assert sim.item() >= -1.0 and sim.item() <= 1.0
def test_failed_load_model(caplog):
with pytest.raises(Exception):
JinaEmbeddings("invalid_model")
assert "Failed to load the model or the tokenizer" in caplog.text
def test_failed_generate_text(caplog, model):
with pytest.raises(Exception):
model.run("invalid_task")
assert "Failed to generate the text" in caplog.text
@pytest.mark.parametrize("device", ["cuda", "cpu"])
def test_change_device(model, device):
model.device = device
assert model.device == device
Loading…
Cancel
Save