1st hivemind class

Former-commit-id: e73878f062
workerULTRANODE
Kye 2 years ago
parent bde56697f4
commit 48bf92f82e

@ -1,2 +1,47 @@
# many boss + workers in unison # many boss + workers in unison
#kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)` #kye gomez jul 13 4:01pm, can scale up the number of swarms working on a probkem with `hivemind(swarms=4, or swarms=auto which will scale the agents depending on the complexity)`
import concurrent.futures
import logging
from swarms.swarms import Swarms
from swarms.tools.agent_tools import *
logging.basicConfig(level=logging.DEBUG, format='%(asctime)s - %(levelname)s - %(message)s')
class HiveMind:
def __init__(self, openai_api_key="", num_swarms=1, max_workers=None):
self.openai_api_key = openai_api_key
self.num_swarms = num_swarms
self.swarms = [Swarms(openai_api_key) for _ in range(num_swarms)]
self.vectorstore = self.initialize_vectorstore()
self.max_workers = max_workers if max_workers else min(32, num_swarms)
def initialize_vectorstore(self):
try:
embeddings_model = OpenAIEmbeddings(openai_api_key=self.openai_api_key)
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
return FAISS(embeddings_model.embed_query, index, InMemoryDocstore({}), {})
except Exception as e:
logging.error(f"Failed to initialize vector store: {e}")
raise
def run_swarm(self, swarm, objective):
try:
return swarm.run_swarms(objective)
except Exception as e:
logging.error(f"An error occurred in run_swarms: {e}")
def run_swarms(self, objective, timeout=None):
with concurrent.futures.ThreadPoolExecutor(max_workers=self.max_workers) as executor:
futures = {executor.submit(self.run_swarm, swarm, objective) for swarm in self.swarms}
results = []
for future in concurrent.futures.as_completed(futures, timeout=timeout):
try:
results.append(future.result())
except Exception as e:
logging.error(f"An error occurred in a swarm: {e}")
return results
Loading…
Cancel
Save